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Abstract 

Background  Prostate Cancer (PCa) represents the second leading cause of cancer-related death in men. Prostate-
specific antigen (PSA) serum testing, currently used for PCa screening, lacks the necessary sensitivity and specificity. 
New non-invasive diagnostic tools able to discriminate tumoral from benign conditions and aggressive (AG-PCa) 
from indolent forms of PCa (NAG-PCa) are required to avoid unnecessary biopsies.

Methods  In this work, 32 formerly N-glycosylated peptides were quantified by PRM (parallel reaction monitor-
ing) in 163 serum samples (79 from PCa patients and 84 from individuals affected by benign prostatic hyperplasia 
(BPH)) in two technical replicates. These potential biomarker candidates were prioritized through a multi-stage 
biomarker discovery pipeline articulated in: discovery, LC-PRM assay development and verification phases. Because 
of the well-established involvement of glycoproteins in cancer development and progression, the proteomic analysis 
was focused on glycoproteins enriched by TiO2 (titanium dioxide) strategy.

Results  Machine learning algorithms have been applied to the combined matrix comprising proteomic and clinical 
variables, resulting in a predictive model based on six proteomic variables (RNASE1, LAMP2, LUM, MASP1, NCAM1, 
GPLD1) and five clinical variables (prostate dimension, proPSA, free-PSA, total-PSA, free/total-PSA) able to distinguish 
PCa from BPH with an area under the Receiver Operating Characteristic (ROC) curve of 0.93. This model outperformed 
PSA alone which, on the same sample set, was able to discriminate PCa from BPH with an AUC of 0.79.

To improve the clinical managing of PCa patients, an explorative small-scale analysis (79 samples) aimed at distin-
guishing AG-PCa from NAG-PCa was conducted. A predictor of PCa aggressiveness based on the combination of 7 
proteomic variables (FCN3, LGALS3BP, AZU1, C6, LAMB1, CHL1, POSTN) and proPSA was developed (AUC of 0.69).

Conclusions  To address the impelling need of more sensitive and specific serum diagnostic tests, a predictive 
model combining proteomic and clinical variables was developed. A preliminary evaluation to build a new tool able 
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to discriminate aggressive presentations of PCa from tumors with benign behavior was exploited. This predictor dis-
played moderate performances, but no conclusions can be drawn due to the limited number of the sample cohort.

Data are available via ProteomeXchange with identifier PXD035935.

Keywords  Biomarker panel, Mass spectrometry, Machine learning, Ribonuclease pancreatic, Lysosome-associated 
membrane glycoprotein 2, Lumican, Mannan-binding lectin serine protease 1, Neural cell adhesion molecule 1, 
Phosphatidylinositol-glycan-specific phospholipase D

Background
Prostate cancer (PCa) is the most frequently diagnosed 
neoplasia, covering about a quarter of new cancer diag-
noses, and the second leading cause of cancer-related 
death in males [1]. The considerable mortality rate of this 
tumor underlines the impelling need to improve the diag-
nostic and therapeutic tools currently used in clinics.

Prostate-specific antigen (PSA) blood testing is often 
employed to select patients eligible for prostate biopsy 
but its routinary blood measurement in clinical check-
ups is controversial by virtue of its limited specificity and 
sensitivity [2]. Furthermore, of no less importance is the 
risk of overdiagnosis and overtreatment associated with 
the use of this biomarker [3].

Over the years, improvements in proteomic tech-
nologies have fostered interest in mass spectrometry 
(MS)-based discovery of new cancer biomarkers [4]. 
In particular, MS is a powerful method that enables 
to unveil proteomes in depth and to shed light on pro-
teomic perturbations that can play a significant role in 
cancer [5]. Blood proteomics has always attracted a spe-
cial interest in the field of biomarker discovery. In fact, 
blood samples are easily collectible and widely available.

Since tissue-derived proteins are diluted in the sys-
temic circulation, the concentration of proteins of poten-
tial interest in cancer biomarker discovery lies below 
a few ng/mL [6]. Besides, direct protein quantification 
by MS in enzymatically digested blood is further ham-
pered by the high complexity of this biological sample, in 
which protein constituents differ in their concentration 
by several orders of magnitude [7]. This technical chal-
lenge fostered the development of enrichment strategies 
aimed at reducing sample complexity and at enriching 
the blood proteome with low abundance proteins [8]. In 
this regard, particularly intriguing is the strategy of gly-
coprotein enrichment. Glycoproteins are intended for 
secretion, thus they will likely be found in the systemic 
circulation. Moreover, most cancer biomarkers currently 
in use are glycoproteins [9–11]. Finally, the involvement 
of glycoproteins in cancer development and progression 
is well established [12].

Glycoproteomics of PCa is an ever-expanding field, as 
demonstrated by the numerous studies which belong to 
this area of interest [13]. An early pivotal study about PCa 

biomarker discovery identified a serum glycoprotein sig-
nature comprising ASPN, CTSD, HYOU1 and OLFM4, 
(from this point on, throughout the text, proteins will 
be indicated via their gene names to allow a more flu-
ent reading) able to discriminate between BPH and PCa 
groups with an area under the ROC curve (AUC) of 0.726 
[14]. Glycoproteomics has also been explored for dis-
criminating between indolent PCa (NAG) and aggres-
sive PCa (AG) through a multiplexed targeted MS assay 
based on parallel reaction monitoring (PRM) [15]. The 
implementation of leaner sample preparation workflows 
and the increased robustness of LC–MS methods have 
allowed higher throughput studies. As a result, a recent 
work by by Sajic et al. [16]. reported biofluid glycoprot-
eomics of five different types of localized cancers in a 
large sample cohort. This multi-cancer comparison iden-
tified both tumor-specific biomarkers and “common bio-
markers” reflecting the systemic response to cancer.

Here, we present the development of a predictive 
model able to distinguish PCa from BPH patients based 
on a few clinical variables combined with a panel of pro-
teins measured by targeted-MS. The protein panel was 
chosen by implementing a multi-stage strategy for serum 
glycoproteomics articulated in a discovery, a PRM assay 
development and a verification phase followed by multi-
variate analysis (Fig. 1).

The complexity issues associated with the use of serum 
as biological sample were tackled by coupling extensive 
fractionation strategies and glycopeptide enrichment. 
For this purpose, a TiO2 (titanium dioxide) enrich-
ment protocol as reported by Palmisano et  al. was pre-
ferred because of its intrinsic suitability for automation 
[17]. This method allows the predominant enrichment 
of sialylated glycopeptides. In the verification phase, 32 
selected peptides were quantified on 79 PCa and 84 BPH 
specimens in duplicate in MS targeted mode using iso-
topically labelled peptides. Then, proteomic quantitative 
information about these 32 peptides together with some 
routinely measured clinical variables were subjected to 
feature selection using machine learning algorithms. The 
application of this complex pipeline allowed the develop-
ment of a predictive model which could discriminate PCa 
from BPH patients with an AUC (area under the curve) 
of 0.93. With the aim of addressing the impelling need of 
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more informative biomarker panels of tumor aggressive-
ness, a preliminary attempt was made to develop such a 
tool.

Methods
Materials
All chemicals used in the experiments described in this 
section were purchased from Sigma-Aldrich unless oth-
erwise specified.

Sample collection
Blood samples were obtained from the Urology Units of 
Romolo Hospital (Kr) and Magna Graecia University of 
Catanzaro. Specimens were collected from PCa before 
radical prostatectomy and any therapeutic treatment, 
while patients suffering from BPH were recruited as con-
trols. Inclusion criteria were: prostate biopsy performed 
at least 4  weeks prior to recruitment (with a minimum 
of 12 sampling). The exclusion criteria were: previous 
prostatic surgery, radiotherapy of the pelvis, neoadjuvant 
anti-androgenic therapy, therapy with 5-alpha reductase 
inhibitors.

Quantification of proPSA on serum samples was per-
formed by enzyme-linked immunosorbent assay (ELISA) 
using the MYBioSource kit.

Discovery experiments
Three different discovery experiments were carried out in 
order to expand as much as possible the list of potential 
candidates to be validated by PRM. In particular, these 
multiple discovery experiments were performed start-
ing from the same 40 digested serum samples (20 PCa 
and 20 BPH) and are referred in the following sections as 
“Discovery TMT-A”, “Discovery TMT-B” and “Discovery 
3D”. Discovery TMT-A and TMT-B are both based on 
isobaric labelling but differ in where TMT derivatiza-
tion was performed in the workflow: in TMT-A, labelling 
was performed after glycopeptide enrichment by TiO2, 
whereas in TMT-B it preceded the enrichment proce-
dure. On the contrary, Discovery 3D experiments were 
performed in label free mode to construct a database of 
MS spectra for verification experiments.

Protein digestion for discovery experiments
In-solution digestion was performed on 40 serum sam-
ples (20 PCa and 20 BPH). Briefly, 25 µL of each sample 
were diluted with 225 µL of 100 mM triethylammonium 
bicarbonate (TEAB)/2.5% sodium deoxycholate (DOC) 
(w/v). Then, protein disulphide bonds between cysteine 
residues were reduced by adding 25 µL of 100 mM dithi-
othreitol (DDT) and incubating the samples for 5  min 
at 95  °C, then for 60 min at 37  °C with gentle agitation. 

Fig. 1  Serum glycoproteomics for PCa biomarker discovery
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Cysteine residues were alkylated by 24  mM (final con-
centration) iodoacetamide (IAA) for 60 min at 37 °C with 
gentle agitation. Then, IAA excess was quenched by an 
extra 2 mM DTT (incubation of 30 min at 37 °C). Finally, 
124 µL of each sample, corresponding to 10 µL of undi-
luted serum, were withdrawn and mixed with 365  µL 
of 50  mM TEAB in order to lower DOC concentration 
down to 0.5%. Samples were digested overnight with 8 µg 
of trypsin using a 1:100 E/S ratio (37 °C at 650 rpm).

Discovery TMT‑A
Hundred microliters of each digested specimen (about 
160 µg) were pooled in groups of 4 for a total of 10 sam-
ple pools (5 PCa and 5 BPH). DOC was removed by pre-
cipitation (Additional file 1). Then,

glycosylated peptides were enriched by the use of TiO2 
beads following the protocol of Palmisano and co-work-
ers [17].

The 10 sample pools were labelled by Tandem Mass 
Tags (TMT-10 plex, Thermo Fisher). TMT labelling was 
performed following the manufacturer’s protocol except 
for the resuspension volume of TMT reagents, which was 
100 µL of anhydrous ACN (final TMT concentration of 
0.8 µg/µL) (Additional file 1).

TMT-labelled sample pools were combined in 1:1 ratio 
into a single sample. This sample was fivefold diluted in 
Wash B (80% ACN/0.5% formic acid (FA) (v/v)) and then 
fractionated by strong cation exchange (SCX) StageTip 
(Additional file  1) [18]. Then, the 10% of each fraction 
was analyzed by nanoliquid chromatography-tandem 
mass spectrometry (nLC-MS/MS).

Discovery TMT‑B
Twenty-five µL of digested samples (about 40  µg) were 
pooled in groups of 4 samples for a total of 10 pooled 
samples (5  PCa and 5 BPH). Subsequently, peptides 
were labelled as described in Additional file 1. After hav-
ing verified that the labelling reaction was complete, 
by injecting a small aliquot of each sample in nLC-MS/
MS prior to quenching [19], the labelling reaction was 
quenched by hydroxylamine. Then, all samples were 
combined in 1:1 ratio into a single sample mix (about 
1.6 mg in a volume of 12 mL).

Labelled peptides were separated from the detergent 
by acid precipitation followed by solid-phase extraction 
(SPE) (Additional file 1).

By virtue of a higher quantity of peptide starting 
material, TiO2 enrichment was performed using 10  mg 
of beads. Washings and elution were performed as 
described in Additional file  1, section “Glycopeptide 
enrichment”. Then, glycopeptides were de-glycosylated by 

the addition of 6 µL of PNGase F (overnight incubation at 
37 °C with gentle agitation).

Formerly glycosylated peptides were separated in 10 
fractions by C18 (Empore™-3M, C18) StageTips performed 
at basic pH (Additional file 1). Then, 25% of each fraction 
was analyzed by nLC-MS/MS.

Discovery 3D
Discovery 3D experiments were performed to create a 
database of MS/MS spectra for the subsequent verifica-
tion phase. The experiments were performed using solely 
PCa specimens (20 samples), since protein identification 
was mainly directed towards hits potentially increased 
in PCa. From each sample digest, obtained as previously 
described, 175 µL of solution were withdrawn and pooled 
(total volume was 3.5  mL, total peptide amount 5  mg). 
DOC was precipitated using TFA 0.5% and the super-
natant was withdrawn and purified by SPE HLB (3  cc) 
as described in Additional file  1 section “High pH C18 
fractionation”. After SPE purification, the obtained eluate 
was lyophilized. The SPE eluate was resuspended in Tita-
nium Loading Buffer and glycopeptides were enriched 
as described in Additional file  1, section “Glycopeptide 
enrichment”. In this case, 25 mg of TiO2 beads were used. 
Finally, enriched glycopeptides were incubated with 
10 µL of PNGase F to remove carbohydrate moieties.

Formerly N-glycosylated peptides were fractionated 
in 10 fractions by Basic pH fractionation as described in 
in Additional file  1 section “High pH C18 fractionation”, 
using an increased amount of stationary phase in order to 
accommodate the higher amount of material. In particu-
lar, three different StageTips, each packed with 3 Empore 
C18 disks were used. Each of the 10 fractions was divided 
further into 5 additional fractions by SCX using the pro-
cedure described in Additional file 1 section “Strong cat-
ion exchange (SCX) StageTip”. Fractions 7, 8 and 9 eluted 
from the basic pH C18 StageTips were combined in a sin-
gle fraction because of their low peptide content. After 
this procedure, 40 fractions in total were obtained; 25% 
of each fraction was processed by nLC-MS/MS.

nLC‑MS/MS analysis of discovery experiments
All the fractions from Discovery Experiments were ana-
lyzed by tandem mass spectrometry in data-dependent 
acquisition mode (DDA). Briefly, chromatographic sepa-
ration was performed by nanoflow chromatography using 
EASY-LC-1000 instrument (Thermo Fisher) coupled 
with a Q-Exactive mass spectrometer (Thermo Fisher). 
Peptides were separated by an in-house made analytical 
column packed to 14  cm of length with 3  μm C18 silica 
particles (Dr. Maisch). Gradient elution was obtained 
using a binary gradient of 140 min at a flow rate of 300 
nL/min. The mobile phase A and B were (2% ACN/0.1% 
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FA (v/v)) and (80% ACN/0.1% FA (v/v)) respectively. The 
percentage of mobile phase B was increased from 0 to 
6% in 1 s, then to 38% in 120 min and to 100% in 15 min. 
After 5 min at 100%, mobile phase B was then decreased 
to 0% in 2 min. MS detection of peptides gradually eluted 
from the analytical column, was performed by nanoelec-
trospray (nESI) applying a potential of 1700 V to the col-
umn front-end via a tee piece. DDA was performed by 
using a top-12 method, where the 12 most abundant ions 
were automatically selected for HCD fragmentation (col-
lision energy was set at 34% for TMT experiments and at 
25% for the Discovery 3D experiment).

Resolution, AGC target and maximum injection 
time (ms) for full MS and MS/MS were 70 000/35000, 
(1 × 106)/(2 × 105), 50/120, respectively. MS full scan 
range was 350 − 1800  m/z. Mass window for precursor 
ion isolation was 1.6  m/z. Ion threshold for triggering 
MS/MS events was 1 × 105. Dynamic exclusion was 30 s.

Data analysis of discovery experiments
The raw files from TMT-A experiments were analyzed 
with Proteome Discoverer (v. 2.1) using Sequest HT as 
search engine. Search parameters were the following: MS 
tolerance 15  ppm; MS/MS tolerance 0.02  Da. Trypsin 
was selected as an enzyme and two missed cleavage sites 
were allowed. TMT labelling of lysines and N-terminus 
(+ 229.163 Da), deamidation of asparagines (+ 0.984 Da), 
and oxidation of methionines (+ 15.995  Da) were set as 
variable modifications, while carbamidomethylation 
of cysteines (+ 57.021  Da) was set as fixed modifica-
tion. Only peptides harboring glycosylation consensus 
sequence (NXT/S) and fully labelled were kept for subse-
quent statistical analysis.

Data from TMT-B and Discovery 3D experiments were 
analyzed with MaxQuant (v. 6.2). The following param-
eters were used: enzyme trypsin, maximum 2 missed 
cleavages, MS tolerance 3.5  ppm after recalibration and 
MS/MS tolerance of 20 ppm. The dynamic modifications 
were: methionine oxidation (+ 15.995  Da), asparagine 
deamidation (+ 0.984  Da), TMT labelling of lysines and 
N-terminus (+ 229.163  Da) (for TMT-B). Carbamido-
methylation of cysteines (+ 57.021  Da) was set as static 
modification.

The Human Uniprot protein sequence database 
accessed on 15 November 2017 was used as sequence 
database (20184 entries).

Statistical analysis of Discovery TMT-B data was per-
formed with Perseus software. Protein intensities were 
log2 transformed and normalized based on the median 
value of all intensities. Differentially expressed pro-
teins were filtered based on p-value < 0.1 and a fold-
change > 1.1 and presence of glycosylation consensus 
(NX/T).

Results Discovery 3D were analyzed only from a quali-
tative point of view interpolating the list of identifications 
with BioGPS (www.​biogps.​org) and with candidate lists 
selected from the literature16,18 in order to identify pro-
teins involved in PCa development.

LC‑PRM assay development
In this phase, the analytes selected in the discovery 
experiments were quantified in targeted mode by PRM 
in label free mode. Proteomic analysis was carried out 
on 53 specimens (27 BPH, 26 PCa). Serum samples were 
digested, DOC was precipitated and, then glycopep-
tides were enriched by TiO2 enrichment and purified by 
C18 as described in the section relative to the discovery 
experiments.

PRM Quantification of formerly N‑linked glycopeptides
Discovery experiments resulted in a list of 34 formerly 
N-linked glycopeptides (belonging to 31 proteins) of 
interest for PRM quantification in label free mode in 
individual samples. The selected candidates and the rela-
tive proteins are illustrated in the Table 1.

LC–MS method settings (PRM) and data analysis
Formerly N -linked glycopeptides were analyzed using 
the method described in Additional file  1 section “LC-
PRM acquisition method”.

Data sets were imported into Skyline v. 19.1 and peaks 
were automatically integrated and manually inspected. 
For the quantification of the 34 selected peptides (35 
precursors, since one peptide was also detected in its 
oxidized form), MS/MS spectra from 3D Discovery 
Experiments were used to build a spectral library of 
TiO2-enriched serum. The charge states of precursors 
were set to 2, 3 and 4, and the product ions were 1-, 2- 
and 3-charged (ion types y, b, p) with a up to 6 product 
ions. The ion match tolerance was set to 0.05 m/z [20].

Preparation of heavy peptides for validation experiment
The Heavy peptides containing either 13C6 + 15N2 atoms 
(Lys) or 13C6 + 15N4 atoms (Arg) at the carboxy termi-
nal amino acid were bought from JPT Peptide Tech-
nologies (Berlin, Germany, Additional file 2: Table S1). 
These peptides were solubilized in 40% ACN /0.1% FA 
v/v; for most hydrophobic peptides, 70% ACN instead 
of 40% ACN was used (Additional file 2: Table S1). To 
test their purity and to optimize chromatographic con-
ditions, heavy peptides were individually injected in 
nLC-MS/MS. After the completion of PRM verification 
experiments, a “heavy” peptide mixture (HPM) match-
ing the expected relative concentrations of endogenous 
peptides was created. In order to obtain the HPM, 
concentrated peptide solutions were diluted in 40% 

http://www.biogps.org
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ACN/0.1% FA until a concentration value 100-fold 
higher than what reported in Table 2 Si was obtained; 
resulting peptide solutions were then mixed together 
and diluted 100-fold in 10% ACN/0.1% FA. HPM was 
stored in 10 µL aliquots at -80 °C until its use as inter-
nal standard. The concentration of each heavy peptide 
in the HPM is illustrated in Table S2 (Additional file 2). 
HPM was added to each sample after protein digestion 
and N-glycopeptide enrichment, thus before C18 purifi-
cation and nLC-MS/MS.

Verification experiments
This phase was focused on the analysis by PRM of the 
selected candidates by nLC-MS/MS in targeted mode 
by using isotopically labelled peptides as internal stand-
ards. This subset of experiments was performed in 
duplicates on an independent subset of 79 PCa and 84 
BPH patients.

Ultimate sample processing workflow and PRM analysis
Samples were processed as described in the discovery 
experiments, making only minor changes to the original 

Table 1  Candidates tested by PRM and their blood concentration according to the Human Protein Atlas.

Glycosylation site is in bold + underlined (N)

Protein Gene Peptide Charge Experiment Blood
concentration 
(ng/mL)

Ribonuclease pancreatic RNASE1 SNSSMHITDCR 3 discovery-3D 1100

C-type mannose receptor 2 MRC2 VTPAcNTSLPAQR 2 discovery-3D 36

Neutrophil elastase ELANE VVLGAHNLSR 3 discovery-3D 0.37

Pantetheinase VNN1 MTGSGIYAPNSSR 2 discovery-3D 980

Neural cell adhesion molecule L1-like protein CHL1 ISGVNLTQK 2 discovery-3D 5800

Neural cell adhesion molecule L1-like protein CHL1 IIPSNNSGTFR 2 discovery-3D 5800

Pantetheinase VNN1 LTGVAGNYTVCQK 2 discovery-3D 980

Interleukin-6 receptor subunit beta IL6ST LTVNLTNDR 2 discovery-3D 160

Lysosome-associated membrane glycoprotein 2 LAMP2 VQPFNVTQGK 2 discovery-3D 520

Ficolin-3 FCN3 VELEDFNGNR 2 discovery-3D 18000

Cathepsin D CTSD GSLSYLNVTR 2 discovery-3D 370

Metalloproteinase inhibitor 1 TIMP1 FVGTPEVNQTTLYQR 2 discovery-3D 110

Azurocidin AZU1 FVNVTVTPEDQCRPNNVCTGVLTR 3 discovery-3D 0.32

Lactotransferrin LTF NGSDCPDKFCLFQSETK 3 discovery-3D 350

Adipocyte plasma membrane-associated protein APMAP AGPNGTLFVADAYK 2 discovery-3D 130

Periostin POSTN EVNDTLLVNELK 2 discovery-3D 660

Chondroitin sulfate proteoglycan 4 CSPG4 LDPTVLDAGELANR 2 discovery-3D 48

Mannan-binding lectin serine protease 1 MASP1 NNLTTYK 2 discovery-3D 9400

Afamin AFM YAEDKFNETTEK 2 TMT-A 47000

Beta-2-glycoprotein 1 APOH VYKPSAGNNSLYR 3 TMT-A 280000

Plasma kallikrein KLKB1 GVNFNVSK 2 TMT-A 29000

Galectin-3-binding protein LGALS3BP GLNLTEDTYKPR 3 TMT-A 7100

Lumican LUM LHINHNNLTESVGPLPK 2 TMT-A 29000

Serum paraoxonase/arylesterase 1 PON1 HANWTLTPLK 2 TMT-A and B 79000

Complement component C6 C6 VLNFTTK 2 TMT-A 45000

Laminin subunit beta-1 LAMB1 LSDTTSQSNSTAK 2 TMT-B 250

Receptor-type tyrosine-protein phosphatase eta PTPRJ SNDTAASEYK 2 TMT-B 670

Pregnancy-zone protein PZP QEVCEEFSQQLNSNGCITQQVHTK 4 TMT-B 15000

Pregnancy-zone protein PZP TFSSMTCASGANVSEQLSLK 3 TMT-B 15000

Endoglin ENG QNGTWPR 2 TMT-B 280

Neural cell adhesion molecule 1 NCAM1 NISSEEK 2 TMT-B 2300

Phosphatidylinositol-glycan-specific phospholipase D GPLD1 NINYTER 2 TMT-B 110000

Uromodulin UMOD QDFNITDISLLEHR 3 TMT-B 66

Transferrin receptor protein 1 TFRC DFEDLYTPVNGSIVIVR 2 TMT-B 1300
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protocol (Additional file  1 section “Sample processing 
workflow”).

The whole pipeline was carried out in duplicate for 84 
BPH and 79 PCa serum samples, accomplishing a total of 
326 nLC-MS/MS analyses.

nLC-MS/MS analysis was performed using the acquisi-
tion method described in Additional file 1 section “Ulti-
mate LC-PRM acquisition method”.

A schematic view of the PRM method is reported in 
Additional file 2: Table S3.

Data analysis
The variability of the glycopeptide enrichment procedure 
was corrected through introducing a normalization fac-
tor based on the quantification, by extracted ion chroma-
togram (XIC), of 30 highly abundant serum glycopeptides 
(Additional file 2: Table S4). The selection criteria for the 
30 glycopeptides used for normalization were: high con-
centration and no involvement in inflammation.

Sample replicates were evaluated for their concord-
ance. As criterion, the “scaled relative difference” (SRD) 
introduced by Hyslop and White in 2009 was chosen 
[21]. The scaled relative difference can be defined by the 
following formula: (Ci1-Ci2)/Ci√2

where Ci1 and Ci2 represent the sum of all XIC values 
for the 30 reference glycopeptides in replicates 1 and 2, 
respectively, whereas Ci is the average of the two meas-
ures. SRD higher than 0.50 (or lower than − 0.50), indi-
cating a difference in glycopeptide abundance between 
the two replicates higher than twofold, was considered 
not acceptable. In this case, the replicate with the lower 
recovery of glycopeptides was discarded. Besides, nLC-
MS/MS runs having a Ci1 or Ci2 value 2 standard devia-
tions lower than the average Ci in the data set were also 
excluded (Additional file 3: Table S5). After this prelimi-
nary filtering operations, 131 duplicate analyses and 32 

single analyses, respectively, were subjected to multivari-
ate analysis.

Multivariate analysis
The calculated areas of light peptides were corrected by 
the IS signal (heavy peptide) as follows:

Ln’ = f * Ln.
where Ln is the area obtained for the n-th peptide light, 

Ln’ is the corrected area, and f is the correction factor 
obtained with the formula below:
f = Hm / Hn.
where Hn is the area of the n-th peptide (heavy form) 

and Hm is the average value of the n-th heavy peptide in 
the overall sample set.

After being corrected, the areas of endogenous pep-
tides were normalized using the normalization factor, 
considering the enrichment efficiency. Peptide areas were 
divided by: Ci1 (or 2) / Ca, were Ci1 and Ci2 represent the 
sum of all XIC values for the 30 reference glycopeptides 
in replicate 1 and 2, respectively, whereas Ca represents 
the average value obtained for the entire data set. Finally, 
for each sample having a technical duplicate, the average 
between the two replicates for each peptide was calcu-
lated. The whole data matrix after peptide normalization 
is reported in Table S6 (Additional file 4).

Clinical variables (Additional file 4: Table S7) together 
with mass spectrometric results (32 peptide areas) 
were filtered by feature selection exploiting different 
approaches. In particular, Random Forest, Chi-square 
test, Pearson coefficient, Lasso regression and Recur-
sive feature elimination have been used. According to 
each model’s metrics, the feature selection identifies the 
most statistically important characteristics and ranks 
them according to relevance score. The linear correlation 
between two attributes is measured by the Pearson corre-
lation coefficient [22]. The Pearson correlation coefficient 

Table 2  Principal 11 significant variables after feature selection

Feature Pearson Chi-2 RFE Logistics Random forest Total

ftPSA True True True True True 5

Prostate dimension (cc) True True True True True 5

ProPSA True True True True True 5

tPSA True True True False True 4

fPSA True True True False True 4

VQPFNVTQGK True True True True False 4

SNSSMHITDCR True True True False True 4

NNLTTYK True True True True False 4

NINYTER True True True True False 4

LHINHNNLTESVGPLPK True True True True False 4

DGQLLPSSNYSNIK True True True True False 4
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given two random variables X and Y, is the ratio of their 
covariance to the sum of their respective standard devia-
tions. To test the independence of two events, the Chi-
square is used [23]. The test examines the difference 
between the observed count and predicted count given 
two factors. The observed count is close to the expected 
count when two variables are independent, which low-
ers the Chi-square value. The Recursive Feature Elimi-
nation (RFE) [24] is then added to the feature selection 
module in order to fit the model and eliminate the worst 
features. By iteratively removing features, the RFE ena-
bles to decrease the collinearity that already exists in 
the supplied data. RFE enables us to recursively reduce 
features by examining data that show their relative rel-
evance. Random Forest (RF) ensures good data abstrac-
tion results also because it is easy to calculate the relative 
value of each feature on the produced decision tree. Sev-
eral random decision trees with nodes containing binary 
questions depending on a single or a combination of fea-
tures are generated by RF. The tree splits the dataset into 
two subsets at each node. The effectiveness of each fea-
ture, or group of features, in dividing the dataset is then 
taken into account when determining its relevance. For 
each test, the maximum number of significant variables 
has been limited to 20. Table 2 illustrates, in decreasing 
order of significance, the 11 variables of higher interest.

The list was filtered leaving variables significant for at 
least 4 of the algorithms (i.e. the first 11 variables) giv-
ing the following set: pro-PSA, Free PSA/Total PSA, 
Gland volume, Total PSA, Free PSA, VQPFNVTQGK 
(LAMP2), NINYTER (GPLD1), LHINHNNLTESVG-
PLPK (LUM), DGQLLPSSNYSNIK (NCAM1), SNS-
SMHITDCR (RNASE1), NNLTTYK (MASP1). Then, 
the sample set was divided into two groups: 143 samples 
were used to build the predictive model, whereas the 
remaining 20 samples were used to evaluate the perfor-
mance of the model by using a voting strategy [25].

In particular, concerning model creation, 100 out of 
143 samples were used as training set (70% of the data-
set) and the remaining 43 samples (30% of the dataset) 
as testing set. The algorithm showing the highest predic-
tive performance (Random Forest), was selected by con-
sidering the highest AUC and also the highest sensitivity 
score, which is one of the most relevant measures in clin-
ical applications, since it gives an idea of the ability of the 
model to minimize false negatives.

Lastly, to evaluate the performance of the predictive 
model, ML algorithms results were integrated by imple-
menting a voting strategy. In particular, two voting strat-
egies were employed to merge the outcomes of all the 
algorithms: hard voting and soft voting. Hard voting 
counted ML models that agreed on the predicted classes. 
More specifically, if 4/5 ML models agreed on PCa for a 

certain input, the hard voting strategy returned PCa as 
result. Whereas, concerning the soft voting approach, 
each ML model prediction (i.e., PCA or BPH class) was 
weighted by the F1 performance measure. The voting 
strategy was applied for the classification of 20 patients 
belonging to the diagnostic grey zone (tPSA 4–10  ng/
mL).

A separate data analysis focused only on PCa dataset 
was also conducted to evaluate the possibility to dis-
tinguish high grade (AG-PCa) from low grade tumors 
(NAG-PCa). PCa sample set was divided in two sub-
groups: 53 AG-PCa (Gleason > 3 + 3) and 26 NAG-PCa 
(Gleason 3 + 3). The principal contributing variables were 
triaged by feature selection step. Model testing was per-
formed on 55 samples (70% of the PCa sample set). The 
selected variables, ranked on their relative contribution 
to the model, were: FCN3, proPSA, LGALS3BP, AZU1, 
C6, LAMB1, CHL1, POSTN. The model was tested with 
the remaining 30% of the sample set (24 data samples).

Results
The primary goal of this work was to develop a predic-
tive model able to discriminate between PCa and BPH 
patients based on a combination of clinical and prot-
eomic variables. Proteomic data were generated by a 
multistage biomarker discovery effort articulated in three 
distinct phases: discovery, LC-PRM assay development, 
and verification. The complete proteomic biomarker dis-
covery pipeline is depicted in Fig. 2.

Discovery phase
The discovery phase was carried out on a limited number 
of samples (20 BPH and 20 PCa) using high amounts of 
starting material and implementing strategies to de-com-
plex the proteome of serum samples (creation of sample 
pools, fractionation protocols and glycopeptide enrich-
ment by TiO2) to maximize the opportunity of retrieving 
tumor-derived proteins in blood.

Two separate TMT-based discovery approaches were 
employed. In the first one (TMT-A), sample pooling was 
followed by detergent precipitation, TiO2 enrichment, 
and TMT labelling. The advantage of this workflow was 
the limited consumption of the relatively expensive TMT 
reagent. In the second discovery experiment (TMT-B), 
TMT labelling was performed soon after protein diges-
tion in order to further reduce technical variability. In 
both TMT workflows, the enriched glycopeptides were 
de-glycosylated by PNGase F prior to offline fractiona-
tion and LC–MS/MS analysis. Since proteins can have 
multiple glycosylation sites and the extent of glycosyla-
tion can vary from site to site, we decided to perform sta-
tistical analysis at the peptide level. Comparative analysis 
of formerly N-glycosylated peptides in the cancer pools 
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and in relative controls were evaluated by performing a 
Student’s t-test (p-value < 0.1). In the light of the fact that 
our interest was focused on proteins increased in the 
cancer group [26], we retrieved from both experiments 
peptides significantly increased in PCa by at least a factor 
of 1.2. We applied relaxed criteria for the initial selection 
of candidates since the LC-PRM assay used in the subse-
quent phases of our biomarker discovery pipeline could 
provide robust quantification of tens of different analytes.

Seven significant peptides from TMT-A experiment 
met the aforementioned selection criteria (Table 3).

On the other hand, TMT-B experiment resulted in 15 
significant peptides exhibiting a fold-change > 1.2. Of 
these, only 6 precursors were included in the validation 
list. Nine peptides were excluded for various reasons: (a) 
peptide length > 25 amino acids (shorter peptides were 
preferred, being more easily detectable in our chroma-
tographic conditions); (b) presence of missed cleavages; 
(c) proven involvement of the corresponding protein 
in inflammation/coagulation; (d) absence of glycosyla-
tion consensus (NXT/S). The higher precision of TMT-
B, because of earlier sample mixing, resulted in several 

significant hits having fold-change values lower than 
1.2. These hits were prioritized based on documented 
involvement in PCa development. After prioritization, 4 
additional peptides with fold-change > 1.08 and < 1.2 were 
included in the list of precursors for targeted experiments 
deriving from experiment TMT-B, which comprised 10 

Fig. 2  Proteomic biomarker discovery pipeline

Table 3  List of candidates selected after TMT-A experiment with 
relative fold-changes (FC).

Glycosylation site is in bold + underlined (N)

Gene Master 
protein

Annotated 
sequence

FC Charge p-value

KLKB1 P03952 GVNFNVSK 2.42 2 0.026

C6 P13671 VLNFTTK 2.13 2 0.013

AFM P43652 YAEDKFNETTEK 2.11 2 0.006

APOH P02749 VYKPSAGNNSLYR 1.81 3 0.005

LGALS3BP Q08380 GLNLTEDTYKPR 1.73 3 0.055

PON1 P27169 HANWTLTPLK 1.48 2 0.077

LUM P51884 LHINHNNLTESVG-
PLPK

1.31 2 0.097
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peptides (Table 4). The peptide HANWTLTPLK (PON1) 
was selected from both TMT experiments, thus the two 
TMT-based discovery experiments provided a total of 16 
candidates.

Overall, 410 peptides belonging to 163 proteins were 
identified in experiment TMT-A, whereas 1188 peptides 
belonging to 343 proteins were identified in experiment 
TMT-B (Additional file 5). The first workflow was more 
cost-effective but was expected to deliver lower over-
all precision. Indeed, median CV of peptides detected 
in experiment TMT-A was 25% (PCa and BPH groups 
were considered separately). On the other hand, the sec-
ond workflow provided a far better precision (median 
CV of 10%) though it required a much higher amount of 
TMT reagent. Indeed, many more significant differences 
were observed in experiment TMT-B. In view of these 
data, the workflow TMT-B, comprising isobaric label-
ling before TiO2 enrichment, should be the preferred 
approach.

To prepare for targeted experiments directed towards 
unlabeled peptides, a comprehensive spectral library 
of formerly N-glycosylated precursors was built by per-
forming a large-scale, data-dependent experiment with 
extensive fractionation on a sample pool processed as 
follows. About 5  mg of proteins obtained from 20 PCa 
serum samples were digested and subjected to TiO2 
enrichment, as described in the Experimental Section. 
Peptides were divided into 40 fractions by a combination 
of sequential offline basic-pH C18 and SCX fractionation; 
all fractions were analyzed by LC–MS/MS analysis. This 
effort resulted in the identification of 444 proteins, many 
of which were known to be present in serum at low abun-
dance levels. Before proceeding with the LC-PRM assay 
development, we assessed whether some of these low 
abundance proteins had been previously associated with 
PCa progression by relying on: (i) BioGPS (www.​biogps.​
org), (ii) previously published reports in the PCa field 

[16, 30], and (iii) in-house produced data from proteomic 
analysis of EPS-urine (expressed prostatic secretions) 
[25]. This investigation resulted in the expansion of the 
candidate list for targeted experiments by additional 18 
peptides (Table 5).

LC‑PRM assay development
The discovery experiments were followed by the LC-
PRM assay development phase performed on 53 samples 
(27 BPH and 26 PCa) in which the objectives were: (i) the 
optimization of chromatographic conditions and scan-
ning parameters for each of the 34 selected candidates; 
(ii) the verification of the consistent detection and quan-
tification of each candidate in a sufficient number of sam-
ples; (iii) the measurement of median peptide area for 
each of the 34 candidates, in order to design a reference 
heavy peptide mix containing the appropriate amount 
of each internal standard. A few peptides did not pass 
these assay development criteria, and were not detected 
during targeted experiments: the peptides QEVCEEF-
SQQLNSNGCITQQVHTK and TFSSMTCASGANVS-
EQLSLK belonging to PZP and the peptide QNGTWPR 
from ENG. These three were excluded from the final list 
of candidates. In this phase, we also tested the charac-
teristics of heavy peptides and optimized relative sam-
ple mixing. Solubilization problems were encountered 
for heavy peptides FVDVTVTPEDQCRPNNVCTG-
VLTR (AZU1) and LHINHNDLTESVGPLPK (LUM). 
Some hydrophobic peptides may be effectively solubi-
lized in a concentrated peptide mixture (such as digested 
serum sample, even after glycopeptide enrichment), but 
may precipitate when dissolved in plain solvent such as 
a water/organic mixture. On the other hand, peptide 
NISSEEK (NCAM1) could not be consistently detected 
because its extreme hydrophilicity compromised its 
peak shape, and consequently compromised sensitiv-
ity of detection. Probably the hydrophobic TMT tag had 

Table 4  Candidates selected after TMT-B experiment with relative fold-changes (FC)

Glycosylation site is in bold + underlined (N). For precursors having a FC < 1.2, the corresponding Reference used for their selection is cited in the “Ref.” column

Gene Master protein Annotated sequence FC Ref Charge p-value

PZP P20742 QEVCEEFSQQLNSNGCITQQVHTK 1.53 4 0.052

PZP P20742 TFSSMTCASGANVSEQLSLK 1.41 3 0.077

ENG P17813 QNGTWPR 1.22 2 0.014

UMOD P07911 QDFNITDISLLEHR 1.21 3 0.085

PON1 P27169 HANWTLTPLK 1.20 2 0.096

TFRC G3V0E5 DFEDLYTPVNGSIVIVR 1.20 2 0.095

LAMB1 P07942 LSDTTSQSNSTAK 1.15 [27] 2 0.090

NCAM1 H7BYX6 NISSEEK 1.11 [14] 2 0.082

GPLD1 P80108 NINYTER 1.11 [28] 2 0.098

PTPRJ Q12913 SNDTAASEYK 1.09 [29] 2 0.031

http://www.biogps.org
http://www.biogps.org
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favored its detection in the discovery phase. This last 
peptide was replaced with another glycopeptide belong-
ing to the same protein: DGQLLPSSNYSNIK. In total, 
29 precursors were selected for the verification phase 
to be quantified by an internal standard and 3 pep-
tides FVDVTVTPEDQCRPNNVCTGVLTR (AZU1), 
LHINHNDLTESVGPLPK (LUM) and DGQLLPSSNYS-
NIK (NCAM1) were selected to be quantified in targeted 
label-free mode.

Verification phase
The last step of the proteomic analysis was the verifica-
tion phase, in which candidates were quantified by PRM 
by relying, in most cases, on heavy peptides for accurate 
quantification. In total, 163 digests from patient sera 
(84 BPH and 79 PCa) were processed and analyzed in 
duplicates. In particular, digests of serum proteins were 
subjected to glycopeptide enrichment by TiO2, de-glyco-
sylation by PNGase F, the addition of HPM, and finally 
peptide desalting using C18 stage-tips. Baseline charac-
teristics of the entire cohort are stated in Table 6.

Thirty-two peptides belonging to 30 proteins span-
ning a dynamic range of over 5 orders of magnitude (62 
precursors in total) were quantified in a multiplexed MS 
analysis lasting 60 min (Fig. 3). Overall, 326 nLC-MS/MS 
runs were performed.

Peaks were integrated by Skyline software and manu-
ally inspected. MS runs were normalized for glycopeptide 

enrichment efficiency. Indeed, this step of the protocol, 
(TiO2 enrichment), being performed before the addi-
tion of “heavy” internal standards, represents the proce-
dure harboring the major source of variability. The use 
of HPM before TiO2 glyco-capture was hampered by the 
impossibility of synthesizing heavy peptides bearing the 
full glycan structures. The variability of the enrichment 
step was corrected through introducing a normalization 
factor based on the quantification, by extracted ion chro-
matogram (XIC) of 30 selected high-abundance serum 
glycopeptides (Additional file 1: Table S4 and Additional 
file 2: Table S5). We assumed that the sum of the XICs of 

Table 5  List of candidates selected in the 3D Experiment.

Glycosylation site is in bold + underlined (N)

Gene Master protein Protein name Annotated sequence Ref Charge

APMAP Q9HDC9 Adipocyte plasma membrane-associated protein AGPNGTLFVADAYK [30] 2

AZU1 P20160 Azurocidin FVNVTVTPEDQCRPNNVCTGVLTR [25] 3

CHL1 O00533 Neural cell adhesion molecule L1-like protein ISGVNLTQK BioGPS 2

CHL1 O00533 Neural cell adhesion molecule L1-like protein IIPSNNSGTFR BioGPS 2

CSPG4 Q6UVK1 Chondroitin sulfate proteoglycan 4 LDPTVLDAGELANR BioGPS 2

CTSD P07339 Cathepsin D GSLSYLNVTR [30] 2

ELANE P08246 Neutrophil elastase VVLGAHNLSR [25] 3

FCN3 O75636 Ficolin-3 VELEDFNGNR [16] 2

IL6ST P40189 Interleukin-6 receptor subunit beta LTVNLTNDR [30] 2

LAMP2 P13473 Lysosome-associated membrane glycoprotein 2 VQPFNVTQGK [30] 2

LTF P02788 Lactotransferrin NGSDCPDKFCLFQSETK [25] 3

MRC2 Q9UBG0 C-type mannose receptor 2 VTPACNTSLPAQR [16] 2

POSTN Q15063 Periostin EVNDTLLVNELK [30] 2

RNASE1 P07998 Ribonuclease pancreatic SNSSMHITDCR [16] 3

TIMP1 P01033 Metalloproteinase inhibitor 1 FVGTPEVNQTTLYQR [30] 2

VNN1 O95497 Pantetheinase MTGSGIYAPNSSR BioGPS 2

VNN1 O95497 Pantetheinase LTGVAGNYTVCQK BioGPS 2

MASP1 P48740 Mannan-binding lectin serine protease 1 NNLTTYK BioGPS 2

Table 6  Baseline characteristics of the entire cohort. Total PSA 
(tPSA), free/total PSA (ftPSA)

Clinical variables PCA (n = 79) BPH (n = 84) p-value

Age (years), median (IQR) 69 (64.5–73.5) 69 (62–72.5) 0.13

Prostate dimension (cc),
median (IQR)

40 (30–50) 55 (40–78)  < 0.05

ProPSA, median (IQR) 553.9 (385.7–996) 257.7 (87–440)  < 0.05

tPSA, median (IQR) 8.05 (5.66–15.85) 2.4 (0.93–4.84) 0.09

ftPSA, median (IQR) 16 (12–22) 35 (24–45)  < 0.05

fPSA, median (IQR) 1.43 (0.99–2.7) 0.81 (0.28–1.72) 0.23

Gleason 6, n (%) 26 (33%) N/A

Gleason 7 (3 + 4), n (%) 22 (28%) N/A

Gleason 7 (4 + 3), n (%) 16 (20) N/A

Gleason ≥ 8, n (%) 15 (19) N/A
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these 30 peptides was directly proportional to the over-
all glycopeptide recovery from TiO2 enrichment. Dupli-
cate analyses were excluded when considered divergent 
according to the principle of “scaled relative difference” 
(as described in the Experimental section). Besides, sin-
gle analyses having a glycopeptide content much lower 
than the average (lower than 2SD) were also excluded. 
After this preliminary selection, 131 duplicate analyses 
and 32 single analyses (for a total of 294 nLC-MS/MS 
runs) underwent multivariate statistics. Peptide peak 
areas were corrected by relaying on IS and on total gly-
copeptide content as described in the Experimental. Peak 
areas from duplicate analyses were averaged.

As reported above, the process of data analysis was 
conducted by considering both proteomic results and 
clinical information. The predictor model building 
was performed on approximately 90% of the sample 
set (143/163 samples), while about 10% of samples (20 
patients having tPSA between 4 and 10  ng/mL) were 
intended for further evaluation of the model’s perfor-
mance by the use of voting strategy [25]. Model realiza-
tion, in a first step, consisted in a feature selection phase. 
Then, the 11 relevant ranked variables were used for 
model testing on 100 samples (70% of the sample set). 
The 11 variables, ranked in Fig. 4 based on their relative 
contribution to the model, were: tPSA, ftPSA ratio (free/
total PSA), proPSA, prostate gland dimension, RNASE1, 
LAMP2, GPLD1, LUM, NCAM1, free PSA(fPSA). The 
model was tested with the remaining 30% of the sample 
set (43 data samples). For each tested algorithm, standard 
performance metrics have been considered (i.e. accuracy, 
F1, AUC, specificity and sensitivity). Results showed that 
the best performing model was Random Forest, which 

could discriminate between PCA and BPH with an AUC 
0.93 (95% confidence interval, CI, 0.88–0.98) (Table 7).

Figure  5 displays ROC curve comparison for Random 
Forest. The corresponding plots relative to the other four 
models are reported in Additional file 6. As it can be seen 
in Fig.  5, the multivariate model displayed AUC values 
higher than the univariate approach (based on tPSA). 
According to De-Longs test, the difference in AUC 
between Multivariate model and Univariate model had a 
p-value of 0.055. Lastly, model performance was furtherly 
assessed by implementing a voting strategy on 20 sam-
ples. This approach allows to merge the results of all the 
ML algorithms for patient’s classification and resulted in 
the correct assignment of 17/20 patients.

Exploring the possibility of distinguishing between AG‑PCa 
and NAG‑PCa
PCa with Gleason score 3 + 3 (NAG-PCa) is considered 
a low-risk disease. By virtue of its indolent behavior, this 
subgroup of PCa is usually subjected to active surveil-
lance. Accordingly, in order to avoid unnecessary biop-
sies, the possibility to assess tumor behavior by using a 
non-invasive serum test was explored. For this purpose, 
a data analysis pipeline focused only on PCa group was 
exploited. In particular, PCa patients were split in two 
subgroups: 53 AG-PCa and 26 NAG-PCa.

After feature selection phase, 8 variables were prior-
itized and used for model testing on 55 samples  (70% 
of the PCa sample set). The 8 variables, ranked on their 
relative contribution to the model, were: FCN3, proPSA, 
LGALS3BP, AZU1, C6, LAMB1, CHL1, POSTN. 
The model was tested with the remaining 30% of the 

Fig. 3  Blood concentration ng/mL (log10 transformed) of candidates quantified by PRM
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sample set (24 data samples). The best performing model 
resulted to be Random Forest, which showed a moderate 
power to discriminate between NAG-PCa and AG-PCa 
with an AUC of 0.69 (95% confidence interval, CI, 0.57–
0.81) (Table 8) (Fig. 6).

Discussion
Blood proteomics is extremely challenging due to the 
notorious interference of abundant plasma proteins in 
the detection of lower abundance, tissue leakage proteins. 
A strategy to lower the limit of detection of LC–MS/
MS analysis in blood proteomics is to enrich for specific 
classes of proteins on the basis of characteristics such 
as protein size or post-translational modifications. The 
enrichment of glycopeptides or sialylated glycopeptides 
has been proposed for over a decade as a means of reach-
ing the detection of proteins present in serum or plasma 
at concentration levels in the ng/mL range. In this work, 
30 mid- to low- abundance proteins carrying at least one 
glycosylation site, selected on the basis of their poten-
tial relevance in PCa progression, have been quantified 

by relying, for the great majority of analytes, on iso-
topic dilution for minimizing LC–MS/MS bias. Machine 
learning algorithms have been applied to a matrix com-
posed of both proteomic and clinical variables, generat-
ing a predictive model based on six proteomic variables 
(RNASE1, LAMP2, LUM, MASP1, NCAM1, GPLD1) 
and five clinical variables (prostate dimension, proPSA, 
free-PSA, total-PSA, free/total-PSA). Such model was 
able to distinguish PCa from BPH patients in an inde-
pendent set of samples with an AUC of 0.93 (Random 
Forest model). This value is comparable to previous stud-
ies performed on biofluids such as seminal plasma [31], 
neat urine [32], urine enriched in prostatic secretions 
[33], and blood plasma [14, 34]. In particular, Drabovic 
et al. proposed a 2-protein diagnostic panel composed of 
TGM4 and PAEP gene products to be detected in semi-
nal plasma which could discriminate between negative 
biopsy and PCa with an AUC of 0.76 (CI 95% 0.74–0.79) 
[31]. In another work performed on urine enriched in 
prostatic secretions [33], Kim revealed that a diagnos-
tic panel composed by 6 peptides belonging to five gene 

Fig. 4  Variables constituting the predictor model plotted in decreasing order of importance (mean variance)

Table 7  Standard performance metrics for the five Machine Learning models

Algorithm AUC​ f1 Accuracy Specificity Sensitivity

Random forest 0.93 (0.88–0.98) 0.92 (0.87–0.98) 0.93 (0.88–0.98) 0.86 (0.79–0.93) 1

Logistic regression 0.79 (0.71–0.87) 0.79 (0.71–0.87) 0.79 (0.71–0.87) 0.81 (0.73–0.89) 0.77 (0.69–0.85)

KNN 0.81 (0.74–0.89) 0.81 (0.73–0.89) 0.81 (0.74–0.89) 0.81 (0.73–0.89) 0.82 (0.74–0.89)

SVM 0.52 (0.43–0.62) 0.09 (0.03–0.15) 0.54 (0.44–0.63) 0.05 (0.01–0.09) 1

Decision tree 0.75 (0.66–0.83) 0.78 (0.70–0.86) 0.74 (0.66–0.83) 0.95 (0.91–0.99) 0.55 (0.45–0.64)
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products (IDHC, SERA, IGJ, EF2 and KCRB) was able 
to discriminate between BPH and PCa patients with an 
AUC of 0.77 (95% CI 0.68–0.87) in a large cohort of sam-
ples (n = 207). Jedinak reported a multimodal biomarker 
combining three proteins (β2M, PGA3 and MUC3) dis-
covered by proteomic analysis of neat urine with PSA to 
discriminate BPH and PCa in 173 patients, obtaining an 
AUC of 0.81 (95% CI 0.74–0.89) [32]. Concerning blood 
serum/plasma analysis, Cima et  al., by utilizing glyco-
peptide capture and targeted LC–MS/MS analysis of de-
glycosylated peptides, thus by using a strategy similar to 
the one employed in this work, have discovered a four-
protein signature comprising ASPN, CTSD, HYOU1, 

OLFM4 which, in combination with PSA provided an 
AUC of 0.84 (95% CI = 0.82–0.96) in 82 patients [14]. In 
a follow-up work of this study, undertaken by some of 
the same authors, THBS1 and CTSD were assayed by 
ELISA in 474 men suffering from either PCa or BPH [34]. 
Using a multivariable logistic regression model which 
also included ftPSA ratio, the authors could discriminate 
among biopsy-positive and biopsy-negative patients with 
an AUC of 0.86 (95% CI 0.82–0.91).

The term of comparison for the evaluation of our 
model performance was the univariate analysis based 
only on tPSA (measurement routinely performed in the 
clinic). As it can be seen in Fig.  5, the model based on 

Fig. 5  ROC curves and confusion matrix for Random Forest analysis. The plots were drawn considering the following sets of variables: (i) 
proteomic + clinical (named “Multivariate Analysis”, blue), (ii) proteomic variables only (named “Peptides Analysis”, green), (iii) clinical variables 
only (named “Biological Samples”, red), (iv) PSA only (named “Univariate Analysis”, red)



Page 15 of 18Gabriele et al. Clinical Proteomics           (2023) 20:52 	

clinical + proteomic variables (blue line) in our sample 
cohort for Random Forest algorithm displayed the high-
est AUC values (0.93). All ML algorithms (Additional 
file 5), showed AUC values consistently higher than the 
ones obtained by univariate analysis based on tPSA (red 
line). Our model was furtherly validated by implementing 
a voting strategy on 20 patients belonging to the diagnos-
tic grey zone (tPSA between 4 and 10 ng/mL).

This approach, based on the integration of the results 
of all the of ML algorithms, resulted in the correct assign-
ment of 17/20 samples (85% of the tested samples).

We also explored the possibility of assessing tumor 
aggressiveness by using proteomic and clinical vari-
ables. In this case, feature selection led to six proteomic 
variables and one clinical variable (proPSA). The classi-
fier based on Random Forest showed a moderate power 
to discriminate between NAG-PCa and AG-PCa with 
an AUC of 0.69. This result is comparable to the one 
obtained by Wang et  al. [35] using DIA-MS analysis of 
nonglycosylated serum proteins for discovery and ELISA 
assay for validation on two proteins (SPP1 and CP). To 
address this issue, to date, more promising results have 
been obtained by performing glycoproteomic analysis on 
urine as biological specimen, collected either before or 

after digital rectal exam [36–39]. In these studies, AUC 
values up to 0.85 have been reported in the effort to clas-
sify AG and NAG disease.

Conclusions
In this work, the development of a multivariate model 
for discriminating PCa from BPH patients has been 
described. An initial discovery effort was performed on 
sample pools and involved the use of isobaric labelling. 
Two different label-based strategies were adopted, differ-
ing only in the timing of the TMT-labeling step. Labeling 
before glycopeptide enrichment, though costly, dramati-
cally reduced random error. Peptide candidates were 
assayed by PRM assays on individual samples belonging 
to a larger cohort. The multivariate model here reported, 
based on the Random Forest approach, achieving an 
AUC of 0.93, outperformed the univariate approach rely-
ing on tPSA alone. In fact, in our sample set, univariate 
analysis using tPSA values provided an AUC of 0.79. This 
latter value, higher than commonly observed, was prob-
ably due to the higher serum PSA average levels in the 
PCa cohort respect to the BPH cohort.

This study, though, has some limitations. In particular, 
the size of the sample-set prevents drawing a definitive 

Table 8  Standard performance metrics for Machine Learning models for the prediction of PCa aggressiveness

Algorithm AUC​ f1 Accuracy Specificity Sensitivity

Random forest 0.69 (0.57–0.81) 0.69 (0.57–0.81) 0.67 (0.54–0.79) 0.60 (0.47–0.73) 0.78 (0.67–0.89)

Logistic regression 0.50 (0.37–0.63) 0.77(0.66–0.88) 0.63 (0.50–0.75) 1 0

KNN 0.57 (0.44–0.70) 0.73 (0.61–0.84) 0.63 (0.5–0.75) 0.80 (0.69–0.91) 0.33 (0.21–0.46)

Decision tree 0.43 (0.30–0.56) 0.29 (0.17–0.41) 0.38 (0.25–0.50) 0.20 (0.09–0.31) 0.67 (0.54–0.79)

Fig. 6  ROC curve analysis of all the 4 tested ML algorithms (Random forest, blue curve; Logistic Regression, orange curve; KNN classifier, green 
curve; Decision Tree classifier, red curve) and the confusion matrix relative to the best performing ML algorithm (Random Forest)
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conclusion about the performance of the model and its 
straightforward applicability in routine. Furthermore, the 
model comprises formerly N-glycosylated peptides from 
six different low-abundance proteins. The routinary dos-
age of these six proteins, by alternative methods such as 
ELISA, could be laborious to implement and represents 
another weak point of this model. On the other hand, 
the PRM assay here developed could provide simultane-
ous quantification of these six proteins by relying on their 
corresponding surrogate peptides in a single assay. Five 
clinical variables were also integrated into the model; 
some of them, such as tPSA, ftPSA and proPSA are 
already being used in the clinical routine.

A pilot analysis aimed at separating AG-PCa to NAG-
PCa was carried out. However, the developed model of 
PCa aggressiveness achieved only moderate results show-
ing an AUC of 0.69 with the best performing algorithm 
(Random Forest). The latter was only an exploratory 
assessment of the performance of our pipeline to address 
clinical needs. There is no doubt that the discrimination 
of two tumoral conditions, albeit characterized by dif-
ferent aggressiveness, presupposes small differences that 
require larger datasets. Therefore, more extensive studies 
are needed in larger cohorts of patients.
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