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Abstract 

Metastatic pancreatic adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States, 
with a 5-year survival rate of only 11%, necessitating identification of novel treatment paradigms. Tumor tissue 
specimens from patients with PDAC, breast cancer, and other solid tumor malignancies were collected and tumor 
cells were enriched using laser microdissection (LMD). Reverse phase protein array (RPPA) analysis was performed 
on enriched tumor cell lysates to quantify a 32-protein/phosphoprotein biomarker panel comprising known 
anticancer drug targets and/or cancer-related total and phosphorylated proteins, including HER2Total, HER2Y1248, 
and HER3Y1289. RPPA analysis revealed significant levels of HER2Total in PDAC patients at abundances comparable 
to HER2-positive (IHC 3+) and HER2-low (IHC 1+ /2+ , FISH−) breast cancer tissues, for which HER2 screening is rou-
tinely performed. These data support a critical unmet need for routine clinical evaluation of HER2 expression in PDAC 
patients and examination of the utility of HER2-directed antibody–drug conjugates in these patients.
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Introduction
Metastatic pancreatic adenocarcinoma (PDAC) is the 
third leading cause of cancer-related death in the United 
States [1], with a 5-year survival rate of only 11% [2]. 
Standard first-line treatment options include gemcitabine 
plus albumin-bound paclitaxel (gemcitabine/nab-pacli-
taxel), and 5-fluorouracil (FU)/leucovorin, irinotecan, 
oxaliplatin (FOLFIRINOX) [3]. Second-line treatment 
with 5-FU plus liposomal irinotecan has a response 
rate of less than 20% with median overall survival of 
6.2 months [4]. An urgent unmet need exists for identifi-
cation of novel effective treatment paradigms.

Historically, HER2-directed therapy was only indicated 
for HER2-positive breast cancer patients, defined as those 
with HER2 immunohistochemistry (IHC) 3+ , or IHC 
2+ and positive fluorescence in situ hybridization (FISH; 
HER2/CEP17 ratio ≥ 2.0 and HER2 copy number (CN) 
signals/cell ≥ 4). Recent studies have shown the analyti-
cal and technical limitations of IHC-based quantitation 
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of HER2 protein expression in HER2 unamplified/nega-
tive tumors due to the limitations and variability of 
interpretation by pathologists and the lack of accuracy 
and precision of HER2 protein quantitation using cur-
rent HER2 IHC-based assays in the HER2 unampli-
fied setting [5–7]. Moreover, recent data has found that 
approximately 60% of patients who were previously clas-
sified as HER2-negative could be considered as HER2-
low, defined as IHC 1+ /2+ and FISH-negative [8, 9]. The 
DESTINY-Breast04 trial (NCT03734029) evaluation of 
trastuzumab deruxtecan (T-DXd) in previously-treated 
HER2-low metastatic breast cancer patients revealed 
that treatment with HER2-directed therapy was associ-
ated with significantly longer modified progression-free 
survival (mPFS) and overall survival (mOS) compared 
to physician’s choice chemotherapy (9.9  months vs 
5.1  months, and 23.4  months vs 16.8  months, respec-
tively) [10]. Data from HER2 IHC 0 metastatic breast 
cancer patients in the DAISY trial (NCT04132960) also 
assessing T-DXd response revealed a mPFS of 4.2 months 
in this population, compared to 6.7 months in HER2-low 
and 11.1  months in HER2 3+ patients [11]. The DES-
TINY-Breast04 and DAISY trials have raised interest in 
predicting who among HER2-low patients are responders 
to HER2-directed therapy. Aberrant activation (phospho-
rylation) of the human epidermal growth factor 2 (HER2) 
receptor tyrosine kinase leads to tumor cell prolifera-
tion, migration, and survival [12]. Phosphorylated HER2 
is predictive of response to HER2-directed therapeutics 
in breast cancer [13–16], and specifically in the I-SPY2 
TRIAL to HER2-directed tyrosine kinase inhibitors (TKI; 
such as neratinib) in HER2-negative/unamplified tumors 
[17], and to antibody drug conjugates (ADCs; such as 
trastuzumab emtansine) in HER2-positive/amplified 
tumors [18].

The tumor microenvironment (TME) represents a 
complex milieu of heterogeneous cell types, including 
(but not limited to) tumor cells, stromal cells, immune 
cells, endothelial cells, and a complex extracellular 
matrix [19]. Several recent studies have demonstrated 
widespread misinterpretation [20] of gene expression 
signatures from heterogenous bulk tissue specimens, as 
several of the genes or proteins correlative with outcomes 
are stromally expressed [21–26]. Moreover, recent stud-
ies have shown that upfront cellular enrichment of tumor 
epithelium from tissue biopsies is required for accurate 
determination of total and phosphoprotein expression 
in tumor epithelium [27, 28]. Selective harvest of dis-
crete cellular subpopulations from the complex milieu 
of the tumor microenvironment (TME) via laser micro-
dissection (LMD) prior to reverse phase protein array 
(RPPA) analysis allows for the quantitative measure-
ment and functional assessment of the activation state 

of protein drug targets and other known cancer-related 
proteins directly from enriched populations of microdis-
sected tumor cells [28, 29]. IHC-based determinations of 
HER2 expression in the HER2-low (IHC 1+ /2+ , FISH-
negative) or HER2-ultra low (IHC 0) were not analyti-
cally accurate when compared to a CLIA quantitative 
RPPA-based HER2 assay to determine protein expression 
[7]. Nearly 40% of estrogen receptor (ER)-positive HER2 
IHC 0 breast cancer tumors, and 30% of ER-negative 
HER2 IHC 0 breast cancer tumors expressed modest to 
moderate amounts of HER2 by RPPA, which approxi-
mates a 30% response rate seen with T-DXd in HER2-low 
patients in the DAISY trial [11].

While HER2 abundance is not routinely evaluated 
in PDAC patients, previous small cohort studies have 
shown that HER2 overexpression is observable in an esti-
mated 11–45% of pancreatic carcinoma specimens [30], 
though clinical trials evaluating HER2-directed therapy 
have not demonstrated improved outcomes compared 
to standard chemotherapy [31]. Further, the discrepancy 
in the prevalence of HER2-positive/amplified tumors in 
PDAC [30, 31] may be driven by interobserver variability, 
necessitating the need for more quantitative and repro-
ducible methodologies for HER2 quantification, such as 
by RPPA. Given the poor treatment options for pancre-
atic cancer and the efficacy of HER2-directed therapy in 
HER2-low breast cancer, the findings of RPPA analysis of 
LMD enriched tumors could represent a new treatment 
option in this patient population. Here we report RPPA-
based quantitative expression and phosphorylation of 
HER2/3 in LMD enriched tumor samples from patients 
with pancreatic cancer, breast cancer, and other solid 
tumor malignancies.

Methods
Patient specimens
Formalin-fixed, paraffin-embedded (FFPE) primary and/
or metastatic tumor surgical biopsy specimens were 
prospectively obtained from 14 patients with PDAC, 14 
patients with breast cancer, and 40 patients with other 
solid tumor malignancies as part of an IRB-approved 
Molecular Tumor Board study at the Inova Schar Cancer 
Institute (ISCI). Written informed consent was obtained 
from all patients. All experimental protocols involving 
human data in this study were in accordance with the 
Declaration of Helsinki.

Serial tissue thin sections (8  µm) were sectioned by 
microtome (median = 2 sections, range 2–8), placed onto 
polyethylene naphthalate (PEN) membrane slides (Leica 
Microsystems, Wetzlar, Germany), and stained with 
hematoxylin and eosin (H&E). One representative section 
(5  µm) per specimen block was mounted onto charged 
glass slides and H&E stained. Representative slides (the 
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H&E section on glass and one LMD slide per speci-
men block) were scanned using the Aperio ScanScope 
XT slide scanner (Leica Microsystems). Micrographs of 
the representative sections on glass were reviewed by 
board-certified pathologist in Aperio eSlide Manager and 
Aperio ImageScope (Leica Microsystems) to annotate 
and confirm tumor areas of tumor epithelium for LMD 
enrichment.

Laser microdissection
LMD enrichment of tumor epithelium (5–10 µm2) was 
performed on the LMD7 (Leica Microsystems). The 
LMD enriched tumor samples for RPPA analysis were 
collected into cylindrical pressure cycling technology 
(PCT; Pressure Biosciences, Inc., South Easton, MA, 
USA) microtubes. A lysis/extraction buffer containing 
final concentrations of 10% tris(2-carboxyethyl)phos-
phine (TCEP, 50  mM; ThermoFisher Scientific, Inc., 
Waltham, MA, USA), 22.5% tris hydrochloride (Tris–
HCl, 225 mM; ThermoFisher Scientific, Inc.), 4% sodium 
dodecyl sulfate (SDS, v/v; ThermoFisher Scientific, Inc.), 
10% glycerol (v/v; ThermoFisher Scientific, Inc.), and 
37.5% MilliQ type I water was added at a ratio of 2.5 µl 
buffer per mm2 LMD tissue. The microtubes were capped 
with PCT microcaps and placed into 0.5 ml PCR tubes, 
briefly centrifuged, and stored at −  80℃ until sample 
lysis. Representative images before and after LMD were 
captured using the Aperio AT2 slide scanner (Leica 
Microsystems).

CLIA‑based reverse phase protein microarray analysis
The LMD enriched tumor samples were heated at 95 ℃ 
for 20  min, briefly centrifuged, and heated at 80 ℃ for 
2 h. After heating, the samples were stored at 4 ℃ for one 
minute and then centrifuged for 18,000 rcf for 15  min. 
The lysate supernatants containing the denatured pro-
teins were transferred to fresh low protein binding o-ring 
screw-top tubes (Agilent Technologies, Savage, MD, 
USA) and stored at −  80 ℃ until shipment on dry ice 
to Theralink Technologies, Inc. (Golden, CO, USA) for 
RPPA analysis.

RPPA analysis was performed as previously described 
[32] using a 32-marker, CLIA certified and CAP accred-
ited commercial calibrated assay panel for examination 
of the total and phosphoprotein abundances of several 
targets with known relevance in solid tumors [29, 33]. 
The CLIA and CAP accredited RPPA assay is a cali-
brated immunoassay format that has been previously 
described [34–36], and uses a series of calibrators and 
controls along with a reference population data set of 
levels of expression of each of the 32 analytes including 
total and phosphorylated HER2, phosphorylated HER3, 
etc. derived from LMD enriched tumor epithelium over 

400 FFPE breast cancer tumor biopsy samples (100 of 
each HER2/HR subtype). The HER2 expression status of 
the 400 tumors was derived from central lab based HER2 
and HR IHC and/or FISH analysis and each experimen-
tal sample is interpolated/extrapolated to the reference 
population using the calibrator sets which are printed on 
every slide. Under CAP guidelines and in keeping with 
antibody validation criteria outlined by the RPPA society 
and now widely used by the RPPA community [37], the 
RPPA assay workflow includes extensive validation of all 
antibodies by western blotting, peptide competition and 
using positive and negative lysates derived from ligand 
stimulated cell lines. Of note, the CLIA IHC HER2 assay 
(NeoGenomics, Laboratories, Inc., Fort Myers, FL, USA) 
uses the Ventana 4B5 clone, which is validated for use as 
the breast and gastric companion diagnostic. The CLIA 
RPPA HER2 assay (Theralink Technologies, Inc.) uses 
the Invitrogen SP3 clone (rabbit recombinant antibody, 
(catalog MA5-14509, dilution 1:400). However, while the 
RPPA and IHC assays use different clones, the reference 
population used by the RPPA CLIA laboratory to qual-
ify the RPPA assay results were derived from 400 breast 
tumors whose HER2 IHC was previously determined 
using the 4B5 clone and the results were > 95% correlated 
[7].

Briefly, sample lysates for RPPA analysis were printed 
onto nitrocellulose backed slides in technical triplicates 
alongside all requisite controls and calibrators. Prior 
to staining, nitrocellulose slides were pre-treated with 
ReBlot (MilliporeSigma, Rockville, MD, USA) and a 
blocking reagent (I-Block; Applied Biosystems, Waltham, 
MA, USA). Slides were incubated with primary antibod-
ies for 30  min at room temperature, followed by incu-
bation with a secondary antibody. Each staining run 
included a single negative control slide (only antibody 
diluent; no primary antibody). Protein detection was 
amplified via horseradish peroxidase mediated biotinyl 
tyramide deposition and visualized using a fluorescent 
probe (LI-COR Biosciences, Inc., Lincoln, NE, USA). 
Images of the stained RPPA slides were captured on an 
InnoScan 710-AL (Innopsys, Inc., Chicago, IL, USA). 
Individual spots were detected using the InnoScan soft-
ware program, Mapix, and spots with non-standard mor-
phology and/or staining were flagged and removed from 
analysis. The average median intensity value was calcu-
lated for each sample on the array for each analyte as 
well as the negative control slide. Background subtracted 
intensity values for each sample were fit to an analyte-
specific calibrator and total protein normalized. Result-
ing values were compared to a population reference to 
determine patient sample percentile and quartile score. 
The RPPA data is provided in the report as both a contin-
uous variable percentile-based output (0–100) as well as 
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a quartile-based output (0–3) based on the relationship 
of the patient-specific value compared to the population 
reference. The 0–3 scoring output is meant to provide 
interpretive context to physicians who are most used to 
looking at CLIA IHC-based scoring outputs for protein 
biomarkers used in patient treatment decision making 
(e.g. PD-L1, HER2, etc.).

Next generation sequencing
Clinical NGS (specifically, DNA-seq) analysis was per-
formed using the Tempus xT 648-gene panel [38] (Tem-
pus Labs, Inc., Chicago, IL, USA), prioritizing the same 
FFPE tissue specimen as was used for the LMD-RPPA 
analysis whenever possible. Matched specimens (ie. the 
same specimen block) were available for 46 patients for 
analysis by both RPPA and DNA-seq. Different speci-
men blocks were used for RPPA versus DNA-seq for 20 
patients. Different specimen blocks were used for RPPA 
versus DNA-seq for 20 patients. The samples for DNA-
seq were prepared from tissue sections with a median of 
50% tumor cellularity after macrodissection/microdis-
section (range = 20–90% tumor cellularity).

Bioinformatic and statistical analysis
Descriptive statistics was used to summarize the patients’ 
demographics. Fisher’s Exact tests were used to compare 
the RPPA abundances of HER2Total, pHER2Y1248, and 
pHER3Y1289 between groups. SAS software (v9.4; SAS 
Institute, Cary, NC, USA) was used for statistical analysis. 
A significance threshold of p < 0.05 was considered statis-
tically significant. Boxplots of RPPA normalized intensity 
scores for HER2Total, pHER2Y1248, and pHER3Y1289 were 
generated using BoxPlotR [39].

Results
From October 13, 2021 until December 8, 2022, a total 
of 111 patients were consented to an IRB-approved study 
examining the feasibility and utility of including quanti-
tative proteomic analysis into a Molecular Tumor Board 
(MTB) setting at the Inova Schar Cancer Institute (ISCI) 
(Fig. 1A). The cohort analyzed in the present subsidiary 
analysis was comprised of primary and/or metastatic tis-
sue specimens from a cohort of 14 patients with PDAC, 
14 patients with breast cancer, and 40 patients with other 
solid tumor malignancies were selected (Additional file 1: 
Table S1).

Tumor epithelium was harvested via LMD for RPPA 
quantification of total HER2 (HER2Total), phosphoryl-
ated (p)HER2Y1248, and pHER3Y1289 as part of a 32-pro-
tein/phosphoprotein biomarker, research use only (RUO) 
panel in a commercial CLIA/CAP-accredited labora-
tory (Theralink Technologies, Inc.) examining the abun-
dances of targets with known relevance in solid tumors, 

as previously described (Fig.  1B, C) [7, 16–18, 28, 29, 
32, 33]. Protein and phosphoprotein-level expression 
was determined by comparing the RPPA-derived quan-
titative values from each patient LMD tumor sample in 
our cohort against an existing and extensively validated 
RPPA reference dataset derived from LMD enriched 
tumor epithelium from 400 breast cancer specimens with 
centrally-determined HER2-positive/amplified (IHC 
3+ /2+ , FISH-positive) and HER2-negative/unamplified 
(IHC 0/1+ /2+ , FISH-negative) status. In keeping with 
the RPPA as a clinical immunoassay format, the known 
HER2Total, pHER2Y1248, and pHER3Y1289 expression in the 
validated reference population was used to calculate the 
proteomic/phosphoproteomic expression of these tar-
gets from the LMD enriched samples from our cohort 
of patients with pancreatic, breast, or other solid tumors 
using the external calibrators printed on every slide. The 
RPPA HER2Total, pHER2Y1248, and pHER3Y1289 continu-
ous variable percentile values (0–100), the RPPA 0–3 
intensity score and the HER2 IHC value (when obtained), 
are provided for each of the tumor samples from the 68 
patients, including the HER2-positive and HER2-nega-
tive breast cancer tumors so a detailed cohort level and 
case-by-case comparison between the RPPA percentile 
and categorical HER2Total values, the pHER2Y1248 and 
pHER3Y1289 values, and the IHC determined HER2 val-
ues can be seen (Additional file 1: Table S2). Clinical next 
generation sequencing (NGS; DNA-seq and RNA-seq) of 
bulk tissue specimens was performed by a commercial 
sequencing laboratory, prioritizing the same specimen 
block that was used for LMD-RPPA when possible.

PDAC tumors had significantly higher relative levels of 
HER2Total expression than other solid tumors (p = 0.0112), 
and trended higher than the predominantly HER2-nega-
tive breast cancers in our cohort (p = 0.0962) (Fig. 2, Addi-
tional file  1: Table  S3). Moreover, since a heterogeneous 
HER2-positive and HER2-negative breast cancer popula-
tion was used as a reference, the PDAC HER2Total levels 
in this cohort are comparable to those from breast can-
cer patients with HER2-positive and HER2-low tumors. 
The mean HER2Total abundances in PDAC, breast, and 
all other solid tumor malignancies were 1.6, 1.3, and 
0.9, respectively (Fig.  2). Activated pHER2Y1248 and 
pHER3Y1289 abundances did not differ between patients 
with PDAC vs all other solid tumors or between patients 
with PDAC vs breast cancer (p > 0.05). RNA-seq revealed 
ERBB2 (HER2) overexpression in four PDAC patients, one 
breast cancer patient, and two patients with older solid 
tumors. ERBB2 CN gain by DNA-seq was not observed in 
the patients with PDAC or breast cancer, consistent with 
previous studies [30]. ERBB2 CN gain was measured in 
three other solid tumor patients (gastric and esophageal). 
Activating ERBB2 mutations were measured in specimens 
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111 Pa�ents consented into 
the trial

68 Pa�ents remained in trial

41 Pa�ents were excluded
37 Failed feasibility assessment
3 Died
1 Hospital non-compliance

14 Pa�ents with PDAC 14 Pa�ents with breast cancer 40 Pa�ents with other solid 
tumor malignancies

13 Gastrointes�nal
10 Skin
6 Other
4 Sarcoma
3 Lung
3 Genitourinary
1 Brain
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Fig. 1  Overview of study design. A Formalin-fixed, paraffin-embedded (FFPE) primary and/or metastatic tumor surgical biopsy specimens were 
prospectively obtained from patients with PDAC, breast cancer, and other solid tumor malignancies as part of an IRB-approved Molecular Tumor 
Board (MTB) study at the Inova Schar Cancer Institute (ISCI). B Workflow diagram depicting tissue specimen analysis. Tumor epithelium (5–10 µm2) 
from tissue specimens was harvested via LMD at a ratio of 1 mm2 LMD area per 2.5 µl buffer into a lysis buffer containing 50 mM Bond-Breaker TCEP 
Solution, 225 mM Tris–HCl, 4% v/v sodium dodecyl sulfate (SDS), 10% v/v glycerol, in MilliQ Type I water. RPPA analysis of the LMD enriched tissue 
lysates was performed by Theralink Technologies, Inc., as previously described [32, 33]. C Representative micrographs of tissue thin sections stained 
with hematoxylin and eosin (H&E) mounted onto a glass slide histopathological assessment (left, 5 µm), and onto a slide containing a polyethylene 
naphthalate (PEN) membrane after LMD harvest of tumor epithelium (right, 8 µm). Clinical NGS was performed by a commercial sequencing 
laboratory
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Fig. 2  RPPA quantification of HER2Total, pHER2Y1248, pHER3Y1289 and correlation with CLIA-approved clinical IHC scoring. Fisher’s Exact tests were 
performed using SAS software (v9.4) to compare the RPPA abundances of HER2Total, pHER2Y1248, and pHER3Y1289 between groups. An asterisk (*) 
indicates p < 0.05. NS  not significant
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from two breast cancer patients (S310F, G776V) and one 
other solid tumor patient (R929W).

HER2 IHC analysis was independently performed for 
23 patients using the same specimens as were used for 
the LMD-RPPA analysis (Additional file  1: Table  S3). The 
HER2Total abundances quantified by IHC and RPPA were 
not correlated, consistent with previous findings [7]. Further, 
RPPA-based quantification of HER2Total and pHER2Y1248 
were not correlated in PDAC or breast cancer tumors.

Discussion
IHC evaluation of HER2 expression is not a routine part 
of clinical care for PDAC. Based on conventional criteria 
of 3 + IHC staining or 2 + IHC with FISH-positivity, less 
than 2% of PDAC are classified as HER2-positive [40]. 
Routine NGS profiling for PDAC patients is performed 
to evaluate ERBB2 amplification, which is found in only 
2% of cases [41]. Since systemic therapies for PDAC have 
poor results and newer HER2-targeting agents, including 
ADCs, are benefitting patients HER2-low tumors, there 
is a critical unmet need to identify PDAC patients who 
may benefit from anti-HER2 therapy [10]. A few prior 
studies have demonstrated efficacy of HER2-directed 
therapy in HER2-overexpressed PDAC cell lines [42] and 
single-patient reports [43].

We demonstrate a high rate of HER2Total expression in 
PDAC tumors, with more than half of the tumors show-
ing modest to moderate levels of RPPA-determined 
HER2Total. Moreover, RPPA-determined HER2Total expres-
sion in our PDAC cohort was higher than in other solid 
tumors, and most significantly, in over half of the popu-
lation studied. Importantly, the HER2Total protein levels 
measured quantitatively by RPPA in PDAC are compara-
ble with HER2Total abundances in HER2 IHC 3 + amplified 
breast cancer, as well as HER2-low breast tumors. RPPA-
determined tumor HER2 and pHER2 correlations with 
HER2-therapy based clinical treatment response have 
not yet been described in PDAC, so we sought to utilize 
what we postulated was the most conservative approach 
to defining the context of HER2 and pHER2 expression 
and activation in PDAC, which was contextualizing the 
RPPA based HER2 and pHER2 levels to a breast cancer 
reference comprised of known CLIA IHC/FISH deter-
mined HER2 unamplified (including HER2-low tumors) 
and HER2 amplified tumors. Since the CLIA RPPA is a 
calibrated assay and since both the breast tumor reference 
and PDAC patient input were both derived from LMD 
enriched tumor epithelium that were arrayed at the same 
protein concentrations, a direct comparison can be made, 
allowing us to determine and compare the relative levels 
of HER2 protein expression and HER2 activation (phos-
phorylation) in PDAC compared to HER2 unamplified 
breast cancers. This is critical since these breast cancer 

patients with HER2-low disease are now being routinely 
treated under FDA approved therapeutic regimens with 
anti-HER2 agents, which allows us to contextualize 
the major findings of our paper that over 50% of PDAC 
patients have tumors that express the same levels of HER2 
protein and HER2 protein activation as the tumors from 
breast cancer patients who are now routinely prescribed 
HER2 therapies on-label because of those HER2 levels.

These data suggest that while the inhibition of HER2 
signaling by a TKI such as lapatinib or tucatinib will be 
unlikely to provide clinical benefit as the HER2 pathway 
does not appear to be highly activated in PDAC patients, 
the use of HER2-targeting ADCs such as T-DXd may 
promote directed delivery of drugs to the specific HER2-
expressing tumor cells. Concordantly, interim analy-
sis from DESTINY-PanTumor02 phase II trial reported 
meaningful responses to T-DXd in patients with PDAC 
[44]. Our results further suggest that future investigations 
of HER2-targeting ADCs, including T-DXd, in HER2-low 
PDAC patients will have a large pool of potential patients 
eligible for enrollment. The HER3 abundance and activa-
tion state demonstrated here may also provide another 
avenue for exploration, though HER3 has not been estab-
lished as a predictive biomarker [45].

A streamlined LMD-RPPA analytical workflow 
uniquely allows for direct quantification of HER2Total 
abundance and activation state. This same workflow 
has been found to identify HER2 expressing breast can-
cers in the HER2-low setting missed by IHC [18] and 
could be a new molecular approach to identify PDAC 
patients whose tumor HER2 levels are druggable by new 
ADC therapeutics. The HER2-positive arm for biliary 
tract malignancies in TAPUR demonstrated responses 
in patients with activating HER2 mutations, in addition 
to amplified or overexpressed patients [46]. Phospho-
protein activation analysis may be useful for predicting 
response in this subset, in agreement with prior studies 
demonstrating that HER2 phosphorylation could pre-
dict response to neratinib in HER2-mutated breast and 
NSCLC patients [47]. Given the redundancies and com-
plexity of signaling pathways, in a pan-tumor setting 
it is likely that some potential responders will not have 
overexpression, amplification, or activating mutations, 
thus both quantitative HER2Total and pHER2 functional 
protein signaling pathway mapping via RPPA remains a 
compelling tool for predicting responsiveness to HER2-
targeted ADC and/or TKI therapeutics. Additionally, 
LMD enrichment of specimens allows for tumor-centric 
proteomic and phosphoproteomic profiling for a more 
accurate assessment of HER2 abundance, which may 
explain the discrepancy between the HER2Total by RPPA 
and the HER2 IHC characterization determined through 
conventional laboratory diagnostics.
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The primary limitation of our study is the number of 
patients. Additionally, the clinical relevance of HER2 phos-
phorylation and quantitative HER2Total measurements 
in PDAC remains unknown, as no prospective studies 
to date have utilized RPPA analysis in PDAC patients to 
examine HER2Total or pHER2/3 as predictive biomarkers. 
Lastly, LMD is not widely available in the clinical setting. 
Nonetheless, we were encouraged by the high percent-
age of PDAC tumors in which HER2 was expressed and/
or activated. Further studies quantifying proteomic HER2 
expression and/or activation in larger patient cohorts are 
ongoing. Given the dearth of options for relapsed/refrac-
tory PDAC, this is a fertile ground for exploration.

In conclusion, we demonstrate that in over half of the 
PDAC patient tumors evaluated in our study, HER2Total 
protein expression levels are comparable to that of breast 
cancer patients, for which HER2 expression is routinely 
evaluated and now therapeutically targeted with FDA-
approved HER2-directed agents. While our evaluation 
of phosphoprotein expression demonstrated overall low 
activation rates (pHER2Y1248 and pHER3Y1289), some 
patients with activated HER2 phenotypes were also 
found who could be sensitive to HER2-directed TKI ther-
apy as well. More studies are needed to evaluate the clini-
cal benefit of targeting HER2 in this population.
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