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Abstract 

Background The early identification of patients at high‑risk for end‑stage renal disease (ESRD) is essential for pro‑
viding optimal care and implementing targeted prevention strategies. While the Kidney Failure Risk Equation (KFRE) 
offers a more accurate prediction of ESRD risk compared to static eGFR‑based thresholds, it does not provide insights 
into the patient‑specific biological mechanisms that drive ESRD. This study focused on evaluating the effectiveness 
of KFRE in a UK‑based advanced chronic kidney disease (CKD) cohort and investigating whether the integration 
of a proteomic signature could enhance 5‑year ESRD prediction.

Methods Using the Salford Kidney Study biobank, a UK‑based prospective cohort of over 3000 non‑dialysis CKD 
patients, 433 patients met our inclusion criteria: a minimum of four eGFR measurements over a two‑year period 
and a linear eGFR trajectory. Plasma samples were obtained and analysed for novel proteomic signals using SWATH‑
Mass‑Spectrometry. The 4‑variable UK‑calibrated KFRE was calculated for each patient based on their baseline clinical 
characteristics. Boruta machine learning algorithm was used for the selection of proteins most contributing to differ‑
entiation between patient groups. Logistic regression was employed for estimation of ESRD prediction by (1) prot‑
eomic features; (2) KFRE; and (3) proteomic features alongside KFRE.

Results SWATH maps with 943 quantified proteins were generated and investigated in tandem with available 
clinical data to identify potential progression biomarkers. We identified a set of proteins (SPTA1, MYL6 and C6) 
that, when used alongside the 4‑variable UK‑KFRE, improved the prediction of 5‑year risk of ESRD (AUC = 0.75 vs 
AUC = 0.70). Functional enrichment analysis revealed Rho GTPases and regulation of the actin cytoskeleton pathways 
to be statistically significant, inferring their role in kidney function and the pathogenesis of renal disease.

Conclusions Proteins SPTA1, MYL6 and C6, when used alongside the 4‑variable UK‑KFRE achieve an improved 
performance when predicting a 5‑year risk of ESRD. Specific pathways implicated in the pathogenesis of podocyte 
dysfunction were also identified, which could serve as potential therapeutic targets. The findings of our study carry 
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implications for comprehending the involvement of the Rho family GTPases in the pathophysiology of kidney disease, 
advancing our understanding of the proteomic factors influencing susceptibility to renal damage.

Keywords End‑stage renal disease (ESRD), Chronic kidney disease (CKD), Proteomics, SWATH‑MS, Biomarkers, Kidney 
Failure Risk Equation (KFRE), Actin cytoskeleton pathway, RHO GTPasses, Tight junction

Background
Chronic kidney disease (CKD) is an increasing global 
public health concern. It poses a major challenge to 
healthcare systems due to its rising incidence and preva-
lence in various regions [1, 2]. In England, a 2020 assess-
ment revealed that 7.3% of adults are affected by CKD 
stages 3–5 [1]. The societal impact of renal disease is 
substantial, manifesting in considerable healthcare costs 
and imposing burdens on patients and their families. In 
the National Health Service (NHS) in England, CKD is 
estimated to account for approximately 2% of the total 
budget [3]. Even though the population receiving renal 
replacement therapy (RRT) constitutes only a small frac-
tion—one in fifty of those diagnosed with CKD—, their 
resource utilization constitutes more than half of the 
projected total expenditure [3]. Signs and symptoms in 
end-stage renal disease (ESRD) are often non-specific 
and might not appear until irreversible kidney damage 
has already occurred [4]. Accurate prediction of ESRD 
is fundamental to provide optimal CKD patient care, as 
it allows for targeted treatment of those patients with a 
higher risk [5]. Traditionally, static eGFR-based cut-offs 
were employed as criteria for care delivery decision mak-
ing, but more recently, the Kidney Failure Risk Equation 
(KFRE) has been proven to be a superior tool for predict-
ing the 2- and 5-year risk of developing ESRD in patients 
with CKD stages 3a-5 [6]. Its accuracy has been demon-
strated and validated in various international studies [7]. 
In clinical care systems, absolute risk thresholds based 
on the KFRE have been adopted to guide treatment deci-
sions. In the UK, the National Institute for Health and 
Care Excellence (NICE) recommends using the KFRE 
in primary care to identify patients with a high risk of 
ESRD who may benefit from early referral to specialist 
services. The KFRE comes in two versions: a 4-variable 
model and an expanded 8-variable model. The 4-vari-
able KFRE considers factors such as age, sex, estimated 
glomerular filtration rate (eGFR) and albuminuria, whilst 
the 8-variable KFRE includes four additional parameters: 
serum calcium, phosphate, albumin, and bicarbonate [6]. 
In a validation study conducted by Ali and Kalra in 2021 
[5] the KFREs were proven to have a better clinical utility 
than relying solely on eGFR when making clinical deci-
sions for patients with advanced CKD.

Previously, our research team proposed to investigate 
whether proteomic signatures of rapidly progressive 

CKD could be derived [8]. Our findings supported the 
complement cascade and coagulation pathway playing a 
role in the development and progression of renal disease. 
Glycoprotein Afamin (AFM), CCT4 and C6 emerged as 
promising biomarkers for tracking CKD progression. 
These results infer the existence of effective biomarker 
alternatives to traditional diagnostic methods. To build 
upon previous research [5], in this study we proceeded 
to evaluate the KFRE in a UK-based advanced CKD 
cohort, and explored whether improved predictive accu-
racy could be obtained by utilising a proteomic signature 
along with the 4-variable UK-calibrated KFRE in the pre-
diction of ESRD development within 5-years. We demon-
strate that this is indeed the case.

Methods
Study population and setting
The primary cohort of the Salford Kidney Study (SKS; 
Co-I: Kalra) biobank comprises 3,600 prospectively 
followed patients with non-dialysis dependent CKD 
(NDD-CKD) in the United Kingdom. These individu-
als have given consent for the sharing of clinical data, as 
well as for the analysis of plasma and serum biomarkers 
and genomic studies. This longitudinal, ongoing obser-
vational study with full ethical approval, has recruited 
and followed-up patients since March 2002. Patients are 
monitored until discharge, death, or withdrawal from the 
study [9]. Average follow-up is currently 40 months and 
17% have progressed to end-stage kidney disease. Patient 
information, including physical characteristics, medical 
conditions, and laboratory data, is collected at baseline 
and annually during routine clinic visits. At each visit 
samples, including EDTA whole blood, serum and citrate 
plasma are collected, centrifuged, and stored at  –80  °C 
in the local Biological Repository for biomarker and 
genomic research. This study included participants aged 
18 years or older at the time they provided their consent, 
and patients who had an estimated glomerular filtration 
rate (eGFR) below 60  mL/min/1.73 m2 , but had not yet 
initiated renal replacement therapy.

Albuminuria, GFR slope calculation and patient selection
During routine clinic visits, serum creatinine levels 
were measured using a calibrated Jaffe method, trace-
able to an isotope dilution mass spectrometry reference 
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measurement procedure. This method allowed estima-
tion of the GFR using the Chronic Kidney Disease Epi-
demiology Collaboration (CKD-EPI) Equation  [10], a 
prerequisite for the new UK-calibrated KFRE. CKD-EPI 
eGFR values were used to calculate GFR slopes (ΔGFR) 
[8]. The ΔGFR for each patient was computed using 
ordinary least-squares linear regression based on all out-
patient eGFR values during the follow-up period of the 
study. Inclusion criteria included: (1) patients who had a 
minimum of four eGFR measurements over a two-year 
period; and (2) patients exhibiting a linear eGFR trajec-
tory. To ensure this, two independent researchers visually 
reviewed each patient’s eGFR-time slopes, a methodol-
ogy used in previous research [9]. Patients derived from 
the two ΔGFR groups: rapid decline (> 3  ml/min/year) 
and stable (- 0.5 to + 1  ml/min/year) CKD. This study 
encompasses a diverse group of patients with various 
renal diseases, including diabetic nephropathy, hyperten-
sive nephropathy, autosomal dominant polycystic kidney 
disease (ADPKD), glomerulonephritis, as well as indi-
viduals with ’other’ CKD (multiple less frequent diagno-
ses) or those with unknown cause of CKD [8]. The urine 
albumin-to-creatinine ratio (uACR) was calculated from 
urine protein-to-creatinine ratio for all patients using 
a validated online conversion tool [11]. This conversion 
tool has been demonstrated to accurately estimate uACR 
values and is compatible with the KFRE [5].

Kidney failure risk equation
In the current study, we utilised the new UK-cali-
brated KFREs, which differ slightly from those employed 
by our research team in previous publications [12], but 
are desirable as they are tailored to the UK popula-
tion.  The UK-calibrated KFRE model incorporates an 
adjustment factor to the original KFRE based on the dif-
ference between the prevalence of kidney failure in the 
Canadian population (used to develop the original KFRE 
tool) and the prevalence of ESRD in the UK population 
[13]. The 4-variable UK-calibrated KFRE was calculated 
for each of the 433 patients based on their clinical fea-
tures at baseline.

Outcome
The main outcome for the study, ESRD, was defined as 
initiating long-term haemodialysis or peritoneal dialysis, 
receiving a renal transplant, or initiating follow-up in a 
conservative care clinic within five years from the base-
line date.

Sequential Window Acquisition of All Theoretical Fragment 
Ion Spectra (SWATH) analysis
Plasma samples were processed and then analysed using 
SWATH-MS according to our previously published 

methods [8]. The SWATH-MS analysis was performed 
using defined mass spectrometry parameters, includ-
ing isolation window size, overlap and total cycle time, 
enabled protein-relative quantification of more than 900 
proteins, as previously reported [8, 14]. The resulting 
SWATH map was investigated with reference to clini-
cal data to identify potential blood-borne biomarkers 
of renal disease. Detailed description of methodologies 
used for sample preparation, assessment of batch effects, 
quality control parameters, and SWATH-MS proteomic 
profiling can be found in the Additional file 1.

Statistical and data analysis
The proteomic data underwent log2 transformation 
to stabilise the variance and reduce heteroscedasticity. 
Negative values arising from the transformation of val-
ues smaller than one were considered as missing data. 
Additionally, proteomic signals that were identified as 
outliers and exceeded a threshold of 30 were also han-
dled as missing values during the analysis. Any missing 
values within the proteomic dataset were subsequently 
replaced with zeros. Downstream analysis using machine 
learning approaches were performed using the comput-
ing environment R (version 4.2.2). Feature selection was 
performed using Boruta (Boruta version 8.0.0), a wrap-
per technique built around the random forest classifier. 
This method compares the importance of the real pre-
dictor variables with those of permuted copies of the 
original features through statistical testing and multiple 
iterations of random forests. Boruta Feature selection 
has been applied to SWATH-MS data in various studies 
[15, 16] and has been shown to be effective and a most 
stable methodology in permutation-based feature selec-
tion [17]. To rank feature importance, the Boruta algo-
rithm employs mean Z-scores, indicating the number of 
standard deviations a data point deviates from the mean. 
The higher the Boruta importance score, the stronger the 
impact of the input variable on the outcome variable [18].

The caret package (version 6.0.93) was employed to 
create an index with 70% of data to create a balanced 
training and testing set and stratify the partition by the 
ESRD outcome. Subsequently, a logistic regression model 
was constructed to evaluate the performance of the UK-
calibrated KFRE in predicting 5-year ESRD. Additionally, 
we evaluated the performance of the log2-transformed 
proteomic signature that had been identified as statisti-
cally significant through Boruta analysis. The logistic 
regression model was trained and evaluated with tenfold 
cross-validation with the aim of measuring its predictive 
performance using the Receiver Operating Characteris-
tic Area Under the Curve (ROC-AUC) metric. The use 
of cross-validation helps ensure that the model’s perfor-
mance is robust and not overly sensitive to the specific 
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data split, making it a reliable approach for assessing its 
predictive capabilities. The cumulative AUC for the addi-
tion of each potential biomarker, in order of its Boruta 
importance, was calculated using the Cstat function 
from the DescTools package (version 0.99.48) and used to 
evaluate the model performance. ClueGo (version 2.5.7), 
a plug-in feature in Cytoscape (version 3.8.2) was used 
to perform enrichment testing using the list of poten-
tial biomarkers identified by the Boruta algorithm. In 
the ClueGo software the following databases were used: 
GO Biological Process, GO Immune System Process, 
GO Molecular Functions, REACTOME Pathways, and 
Wiki Pathways. Only pathways or functions that exhib-
ited an adjusted p-value of < 0.05, calculated using a two-
sided hypergeometric test with Bonferroni step-down 
correction, were taken into consideration. Additionally, 
a minimum of two proteins/pathway were  required for 
inclusion. For the GO Tree Interval, a minimum level of 
4 was set, and a minimum of 2 genes per GO Term/Path-
way selection was established. In addition to the above 
functional analysis, the biomarkers identified by the ran-
dom forest (RF) algorithm were subjected to functional 
annotation using the Database for Annotation, Visuali-
sation, and Integrated Discovery (DAVID) tool, with the 
default Human gene list serving as the background. The 
biological and molecular significance of each predictor 
was statistically assessed and adjusted for multiple-test-
ing correction using the Benjamini–Hochberg procedure.

Results
Demographic information
The study population consisted of 433 patients from the 
SKS cohort with a broad range of kidney disease aeti-
ologies, including diabetic nephropathy (n = 88, 20.3%), 
glomerulonephritis (n = 66, 15.2%), autosomal dominant 
polycystic kidney disease (n = 49, 11.3%), hypertensive 
nephropathy (n = 44, 10.2%), other (including several 
miscellaneous conditions; n = 125, 28.9%) and unknown 
cause of CKD (n = 54, 12.5%) (Table 1).

The patients in the ESRD group were significantly 
younger, with a mean age of 55.1 years  (SD 15.1) com-
pared to 64.6  years in the non-ESRD group. This age 
difference was significant (p < 0.001). Furthermore, the 
ESRD group exhibited significantly lower bicarbonate 
levels, higher creatinine and phosphate levels, and lower 
serum albumin and eGFR levels, all of which are indica-
tive of renal dysfunction. While differences in age and 
various clinical parameters were evident, no significant 
disparities were observed in sex distribution, ethnicity, 
prevalence of diabetes, hypertension, smoking status, or 
the use of ACE/ARB or statin medications between the 
two groups. The mean UK-KFRE scores for 5-year ESRD 

prediction were also compared. The difference was highly 
significant with the ESRD group having higher scores.

A proteomic signature of ESRD
The resulting SWATH maps quantified a total of 943 pro-
teins in a total of 617 samples (baseline and follow up) 
from 433 unique patients (Additional file  2: Table  S1). 
After only using baseline samples and analysing the miss-
ing values in the dataset, 626 proteins were found to be 
measurable in at least 20% of the 433 baseline samples 
and were used for our main analysis. An initial differen-
tial expression analysis identified a total of 71 proteins 
(Additional file 3: Table S2) that exhibited significant dif-
ferences between the rapid progressor and stable CKD 
groups (adjusted p-values < 0.05). Using the Boruta Fea-
ture Selection algorithm, nine proteins were confirmed 
as important features relevant for classification based on 
our ESRD outcome and are presented in ranked order of 
their mean importance results (Table 2).

The logistic regression model constructed utilising 
solely the UK-calibrated KFRE yielded a performance 
with a ROC-AUC of 0.70, accuracy of 0.83, align-
ing closely with findings from previous studies [5, 12]. 
Expanding the analysis to include the ten confirmed rel-
evant proteins and the 4-variable UK-calibrated KFRE 
resulted in a marginal improvement in predictive perfor-
mance compared to the previous model. Specifically, this 
composite demonstrated an improved AUC of 0.72, accu-
racy of 0.83. We then developed a simplified model using 
only the top three proteins identified by Boruta feature 
selection model: SPTA1, C6 and MYL6. This exhibited an 
enhanced performance improvement in comparison to 
the previous models, achieving a ROC-AUC of 0.75 and 
an accuracy of 0.84 (Fig. 1a).

Functional enrichment analysis
To identify functional pathways associated with our pro-
teomic signatures, and therefore identify mechanisms 
that may correlate with progression of CKD, pathway 
enrichment analysis was carried out using the ten pro-
teins confirmed as important by the Boruta Analysis. Sta-
tistically significantly enriched pathways identified by the 
Database for Annotation, Visualisation, and Integrated 
Discovery (DAVID) for KEGG pathways and ClueGo 
functional enrichment (REACTOME pathways) con-
ducted on the Boruta-identified proteins are shown in 
(Table 3).

Discussion
In-depth analysis of the proteome associated with ESRD 
in a cohort of CKD patients in the United Kingdom 
has identified a protein signature that leads to mod-
est improvement in predictive performance of ESRD 
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developing within 5-years when combined with the 4 
variable UK-calibrated KFRE. With just a subset of three 
proteins, namely SPTA1, MYL6 and C6, a further slightly 
enhanced predictive performance is achieved. The value 
of ROC data has previously been described [19]. The fur-
ther definition we provide with a three-protein measure-
ment has potential value in patient stratification. ROC 
can be considered the diagnostic accuracy of a test and 
thus this increase with an accuracy score of 0.84 (when 
the reagents required for the biochemical assays are 

relatively cheap) is a significant step forward. KFRE is 
employed in clinical decision taking. Kidney Failure 
Risk Equation (KFRE) has proven to be a superior tool 
for predicting the 2- and 5-year risk of developing ESRD 
in patients with CKD stages 3a-5 [6] and has been vali-
dated internationally [7]. An enhanced KFRE with three 
protein assays added then must, by definition, be of 
clinical value. These results underscore the potential 
utility of both a set of three protein biomarkers and the 

Table 1 Clinical profile of patients enrolled in the study updated for the 433 patients

Data presented as mean ± standard deviation (SD) for continuous variables and as counts/percentages for categorical variables. P-values calculated using t-tests for 
continuous variables and chi-squared tests for categorical variables

eGFR: Estimated Glomerular Filtration Rate; uPCR: Urine Protein-to-Creatinine Ratio; uACR: Urine Albumin-to-Creatinine Ratio; UK KFRE: United Kingdom calibrated 
Kidney Failure Risk Equation;  ΔGFR: Change in Glomerular Filtration Rate; ACE/ARB Use: Use of Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor 
Blockers

Characteristic Total Cases
(ESRD group)

Controls
(No ESRD group)

p-value

Sample size n % n % n %

433 100% 141 100% 292 100%

Age (years ± SD) 61.5 ± 15.0 55.2 ± 14.5 64.6 ± 14.4 T‑test  < 0.001

Gender (n, %) n % n % n %
 Male 270 62.4% 86 61.0% 184 63.0% Chi‑squared test 0.76

 Female 163 37.6% 55 39.0% 108 37.0%

Ethnicity n % n  % n  %

 White 416 96.1% 133 94.3% 283 96.9% Chi‑squared test 0.30

 Other ethnicity 17 3.9% 8 5.7% 9 3.1%

 Diabetes n  % n  % n  %

136 31.4% 40 28.4% 96 32.9% Chi‑squared test 0.40

 Hypertension n  % n  % n  %

408 94.2% 136 96.5% 272 93.2% Chi‑squared test 0.19

 Smoking n  % n  % n  %

274 63.3% 92 65.2% 182 62.3% Chi‑squared test 0.63

 ACE/ARB use n  % n  % n  %

306 70.7% 99 70.2% 207 70.9% Chi‑squared test 0.97

 Statin use n  % n  % n  %

280 64.7% 89 63.1% 191 65.4% Chi‑squared test 0.72

 Died n  % n  % n  %

134 30.9% 43 30.5% 91 31.2% Chi‑squared test 0.97

 ΔGFR (ml/min/1.73 m2/year) − 2.1 ± 3.1 − 4.6 ± 3.2 − 1.0 ± 2.3 T‑test  < 0.001

 Bicarbonate (mmol/L) 22.5 ± 3.0 21.4 ± 2.6 23.0 ± 3.1 T‑test  < 0.001

 Creatinine (µmol/L) 204.6 ± 71.7 236.0 ± 83.1 189.3 ± 60.0 T‑test  < 0.001

 Calcium (mmol/L) 2.3 ± 0.2 2.27 ± 0.2 2.29 ± 0.1 T‑test 0.06

 Phosphate (mmol/L) 1.1 ± 0.2 1.2 ± 0.2 1.1 ± 0.2 T‑test  < 0.001

 Albumin (g/L) 42.9 ± 3.7 41.8 ± 4.0 43.5 ± 3.5 T‑test  < 0.001

 eGFR(ml/min/1.73m2) 30.2 ± 14.0 27.0 ± 11.9 31.8 ± 14.7 T‑test  < 0.001

 uPCR (mg/mmol) 98.0 ± 174.5 189.5 ± 236.1 53.9 ± 111.2 T‑test  < 0.001

 uACR (mg/mmol) 33.52 ± 81.05 68.9 ± 117.5 16.4 ± 47.0 T‑test  < 0.001

 Haemoglobin (g/L) 125.2 ± 15.4 121.4 ± 14.2 127.0 ± 15.6 T‑test  < 0.001

 UK KFRE score (4 variable–5 year) 0.1 ± 0.2 0.2 ± 0.2 0.1 ± 0.1 T‑test  < 0.001
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Table 2 Confirmed proteins by Boruta Feature Selection ordered by Mean Importance

The table summarizes the results of Boruta feature selection, a method used to identify important features in a dataset. The columns include: meanImp (Mean 
Importance): Average importance of each feature across Boruta iterations. medianImp (Median Importance): Median importance, providing a robust measure of 
central tendency. minImp (Minimum Importance): Minimum observed importance for each feature. maxImp (Maximum Importance): Maximum observed importance 
for each feature. normHits (Normalized Hits): Frequency of a feature being deemed important, normalized to the total iterations. Higher values in meanImp, 
medianImp, minImp, and maxImp indicate greater feature importance, while normHits reflects the stability of importance across iterations

UNIPROT ID Description Name meanImp medianImp minImp maxImp normHits

P02549 Spectrin alpha chain, erythrocytic 1 SPTA1 27.29 27.27 5.10 38.66 0.97

P60660 Myosin light polypeptide 6 MYL6 27.04 26.94 8.08 40.78 0.98

P13671 Complement component C6 C6 26.49 26.36 4.94 39.84 0.98

Q99784 Noelin OLFM1 25.88 25.96 5.12 36.78 0.97

Q15746 Myosin light chain kinase, smooth muscle MYLK 24.65 24.72 3.59 37.71 0.97

Q15365 Poly(rC)‑binding protein 1 PCBP1 19.68 19.66 6.87 28.84 0.93

Q13045 Protein flightless‑1 homolog FLII 19.43 19.45 4.78 30.33 0.93

O15143 Actin‑related protein 2/3 complex subunit 1B ARPC1B 15.70 15.63 4.71 27.67 0.84

Q92673 Sortilin‑related receptor SORL1 15.38 15.31 4.85 27.86 0.84

Fig. 1 a ROC Curves showing the performance of the models built with the top 3 biomarkers identified by Boruta Feature Selection Algorithm. The 
ROC curve using UKKFRE and proteins SPTA1, C6 and MYL6 gives us the best AUC (0.75). b Overlap between the two sets of biomarkers (Significant 
p‑value < 0.05) proteins from differential expression analysis and proteins from Boruta Feature Selection

Table 3 Functionally enriched pathways using ClueGo using the ten confirmed proteins

MYL6:  Myosin light polypeptide 6; MYLK: Myosin light chain kinase; C6: Complement Component 6; ARPC1B: Actin-relatedprotein 2/3 complex subunit 1B

Category Term Genes Term PValue Term PValue 
corrected with 
Benjamini

REACTOME Pathways Smooth Muscle Contraction MYL6
MYLK

 < 0.01  < 0.01

REACTOME Pathways RHO GTPases activate PAKs MYL6
MYLK

 < 0.01  < 0.01

KEGG Pathways Regulation of actin cytoskeleton C6
MYLK
ARPC1B

 < 0.05 0.27

KEGG Pathways Tight Junction MYL6
ARPC1B

 < 0.05 0.24
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4-variable UK-calibrated KFRE in enhancing the predic-
tive performance of the model for 5-year kidney failure 
risk assessment.

Enrichment analysis revealed a noteworthy enrich-
ment of biological pathways closely associated to kidney 
failure. Specifically, these pathways included the “RHO 
GTPases activate PAKs”, “Regulation of actin cytoskel-
eton”, and “Tight junctions”. Importantly, among the 
proteins identified within these enriched pathways were 
Myosin light chain kinase (MYLK) and Complement 
component (C6), proteins that previous research has 
identified as significant biomarkers in CKD progression 
[8]. This convergence of findings underscores the rel-
evance of these pathways and proteins in the context of 
CKD and kidney failure.

The analysis of complement component 6 (C6) expres-
sion revealed a statistical significant difference between 
the patient groups (p-value < 0.05, see Additional file  3: 
Table S2). Patients who developed ESRD displayed lower 
mean expression levels of C6, suggesting a potential 
downregulation of this protein as a biomarker of renal 
disease. C6 plays a critical role in inflammatory responses 
[20] and serves as a key component of the complement 
system, whose involvement in the pathogenesis of many 
kidney diseases is well established [21, 22]. The termi-
nal pathway of complement activation leads to the crea-
tion of the membrane attack complex (MAC) which 
is composed of C5b, C6, C7, C8, and C9 components. 
The MAC is believed to play an important role in the 
pathogenesis of diverse kidney diseases by causing cellu-
lar injury and tissue inflammation [23]. Of the terminal 
pathway components, C6 deficiency is the most com-
mon component [24]. While complement deficiency is 
associated with recurrent infections, glomerulonephri-
tis, and inflammatory disorders affecting the kidney and 
eyes [25], inherited deficiency of C6 has shown to delay 
the onset of proteinuria and improve renal function in 
a rat model. Complement may play a dual role in renal 
disease, exerting both beneficial and harmful effects [22]. 
This underscores the need for further investigation into 
the role of C6 in renal disease pathology. In addition, 
Byglican (BGN), a tissue-derived protein reported to be 
a biomarker of inflammatory renal diseases [26], was 
also found to have a statistically significant difference in 
expression between our patient groups, with elevated 
levels found in patients that developed ESRD (Additional 
file  3: Table  S2). Expression levels of plasma VCAM1, 
reported to be associated in urine samples with a variety 
of inflammatory kidney diseases [27], did not show a sta-
tistical significant difference between our patient groups 
(see Additional file 3: Table S2).

Regulation of the actin cytoskeleton pathway
Regulation of the actin cytoskeleton is important for the 
structural integrity of the kidneys.

It is a network of proteins that gives cells their shape 
and structure and when the actin cytoskeleton is dis-
rupted, it can lead to changes in the shape and function 
of kidney cells, making the kidneys susceptible to dam-
age. Dysregulation of the actin cytoskeleton in podocytes 
represents a common pathway in the pathogenesis of 
proteinuria, spanning a range of CKD conditions [28, 29]. 
Emerging evidence proposes that interventions aimed at 
modulating the dynamics of the actin cytoskeleton hold 
potential in ameliorating podocyte injury and thus, kid-
ney dysfunction [30]. Given the critical role of the actin 
cytoskeleton in preserving glomerular filtration, under-
standing the molecular architecture and control mecha-
nisms of actin has become a central focus of investigation 
in podocyte research [31]. There is evidence that dysreg-
ulation of the actin pathway ultimately plays a contribu-
tory role in end-stage renal disease (ESRD) [32].

RHO GTPases pathway
A significant enrichment in the RHO GTPases signalling 
pathway was also discovered, which is relevant because 
the RHO GTPases are involved in cell signalling path-
ways that can lead to kidney inflammation and fibrosis 
[31, 33]. The Rho family GTPases are molecular switches 
that play a central role in dynamically regulating the actin 
cytoskeleton, but also of cellular morphology, motility, 
adhesion, and proliferation. The activation of the PAKs 
pathway by Rho GTPases serves as a critical mechanism 
through which Rho GTPases regulate actin cytoskeleton 
remodelling and associated cellular processes. Dysregu-
lated activities of the Rho GTPases and of their effectors 
are implicated in the pathogenesis of both hereditary and 
idiopathic forms of kidney diseases [34]. Activation of 
Rho-GTPases has been linked to podocyte dysfunction, 
the importance of which has already been described in 
relation to CKD progression [35].

Tight junction pathway
Tight junctions are important for maintaining the struc-
tural and functional integrity of the kidneys, responsible 
for sealing the cells of the kidney together and playing a 
vital role in epithelial barrier function [36]. They create 
a barrier between the cells of the nephron, the functional 
unit of the kidney, separating and maintaining biological 
fluid compartments of different composition, and ensur-
ing proper reabsorption and secretion of substances. 
When tight junctions are disrupted, this can lead to the 
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leakage of fluids and proteins into the renal interstitium, 
which can cause tubular damage and lead to kidney fail-
ure [37].

Certain limitations warrant acknowledgment. Firstly, 
our inclusion criteria focused solely on patients with 
linear progression within the rapid progression group. 
Non-linear decline is common, yet these patients often 
tend to have different phenotypes and outcomes, and 
as of yet the proteomic signature of this cohort has not 
been studied specifically [38]. Additionally, while we 
carried out internal validation of our findings, and data 
were analysed using fold-change analysis (which is not 
affected by overfitting), it is important to acknowledge 
that machine learning models developed in this study 
require further validation in independent external 
samples to demonstrate robustness and generalisabil-
ity of the results, for clinical utilisation. Such external 
validation remains pending and should be addressed in 
future work. Lastly, the analysis of podocyte-specific 
proteomic data was not within the scope of this study. 
Incorporating such data into future analyses may con-
tribute to a more comprehensive understanding of the 
renal disease pathogenesis.

Conclusions
The proteomic analysis of an advanced chronic kidney 
disease (CKD) cohort identified that proteins SPTA1, 
MYL6 and C6, when used alongside the 4-variable UK-
KFRE, achieve an improved performance when pre-
dicting a 5-year risk of ESRD. Given the international 
acceptance of the clinical utility of KFRE, our improve-
ment thereon by use of specific protein measurements 
now requires validation and verification. Specific path-
ways implicated in the pathogenesis of podocyte dys-
function were also identified, which could serve as 
potential therapeutic targets.

Abbreviations
ADPKD  Autosomal dominant polycystic kidney disease
AFM  Afamin
CKD  Chronic kidney disease
CKD‑EPI  Chronic Kidney Disease Epidemiology Collaboration
DAVID  Database for Annotation, Visualisation, and Integrated Discovery
eGFR  Estimated glomerular filtration rate
ESRD  End‑stage renal disease
KFRE  Kidney Failure Risk Equation
MS  Mass‑Spectrometry
NHS  National Health Service
NICE  National Institute for Health and Care Excellence
NDD‑CKD  Non‑Dialysis Dependent Chronic Kidney Disease
ROC‑AUC   Receiver Operating Characteristic Area Under the Curve
RRT   Renal replacement therapy

SKS  Salford Kidney Study
SWATH  Sequential Window Acquisition of All Theoretical Fragment Ion 

Spectra
uACR   Urine Albumin‑to‑Creatinine Ratio

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12014‑ 024‑ 09486‑5.

Additional file 1: Supplementary Methods S1.

Additional file 2: Table S1. Log 2 Protein identification and quantification 
data for all individual samples (attached CSV file).

Additional file 3: Table S2. Fold Change Differential Expression analysis 
(attached CSV file).

Acknowledgements
This work was funded by the Medical Research Council (MRC) grant MR/
R013942/1 “NURTuRE: changing the landscape of renal medicine to foster a 
unified approach to stratified medicine” and supported by the NIHR Manches‑
ter Biomedical Research Centre (NIHR203308). The Stoller Biomarker Discovery 
Centre was funded by the Medical Research Council (MR/M008959/1). The 
funders had no role in study design, data collection and analysis, decision to 
publish, or preparation of the manuscript.

Author contributions
PK devised the clinical study. PK, ADW and NG devised the full workflow for 
the study. IBJ, IA gathered and collated data whilst CRRM and NG performed 
major data analysis.

Data availability
Scripts and processed datasets accompanying the paper are available on the 
github repository: https:// github. com/ carlo srami rezme dina/ ESRD_ UKKFRE_ 
Prote omics/. The original datasets and additional materials are available from 
the corresponding author on reasonable request. Further details on data 
accessibility are available from the Corresponding Author.

Declarations

Ethics approval and consent to participate
Plasma samples were collected and processed as part of the Salford Kidney 
Study (SKS). SWATH‑MS protein quantification was carried out at Stoller Bio‑
marker Discovery Centre, The University of Manchester, UK. Data was analysed 
by The University of Manchester and The University of Surrey.

Consent for publication
The results presented in this paper have not been published previously in 
whole or part. All consents obtained prior to publication.

Competing interests
Prof. Kalra received speaker and/or advisory board fees from Astra Zen‑
eca, Napp, Bayer, GSK, Boehringer Ingelheim, Vifor, Pharmacosmos, Novonor‑
disk. Prof. Saleem performs consultancy work for: Travere; Confo therapeutics; 
Purespring Therapeutics. All other authors report no conflict of interest 
regarding this manuscript.

Author details
1 Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, 
The University of Manchester, Manchester, UK. 2 Salford Royal Hospital, 
Northern Care Alliance Foundation NHS Trust, Salford, UK. 3 Division of Car‑
diovascular Sciences, The University of Manchester, Manchester, UK. 4 Bristol 
Renal and Children’s Renal Unit, Bristol Medical School, University of Bristol, 
Bristol, UK. 5 Veterinary Health Innovation Engine (vHive), Faculty of Health 

https://doi.org/10.1186/s12014-024-09486-5
https://doi.org/10.1186/s12014-024-09486-5
https://github.com/carlosramirezmedina/ESRD_UKKFRE_Proteomics/
https://github.com/carlosramirezmedina/ESRD_UKKFRE_Proteomics/


Page 9 of 9Ramírez Medina et al. Clinical Proteomics           (2024) 21:34  

and Medical Sciences, University of Surrey, Guildford, UK. 6 School of Health 
Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guild‑
ford, UK. 

Received: 16 February 2024   Accepted: 25 April 2024

References
 1. Hounkpatin HO, Harris S, Fraser SDS, Day J, Mindell JS, Taal MW, et al. 

Prevalence of chronic kidney disease in adults in England: comparison 
of nationally representative cross‑sectional surveys from 2003 to 2016. 
BMJ Open. 2020;10(8): e038423.

 2. de Vries EF, Rabelink TJ, van den Hout WB. modelling the cost‑effective‑
ness of delaying end‑stage renal disease. Nephron. 2016;133(2):89–97.

 3. Kerr M, Bray B, Medcalf J, O’Donoghue DJ, Matthews B. Estimating the 
financial cost of chronic kidney disease to the NHS in England. Nephrol 
Dial Transplant. 2012;27(Suppl 3):73–80.

 4. Murtagh FE, Addington‑Hall J, Higginson IJ. The prevalence of symptoms 
in end‑stage renal disease: a systematic review. Adv Chronic Kidney Dis. 
2007;14(1):82–99.

 5. Ali I, Kalra PA. A validation study of the 4‑variable and 8‑variable kidney 
failure risk equation in transplant recipients in the United Kingdom. BMC 
Nephrol. 2021;22(1):57.

 6. Akbari S, Knoll G, White CA, Kumar T, Fairhead T, Akbari A. Accuracy 
of kidney failure risk equation in transplant recipients. Kidney Int Rep. 
2019;4(9):1334–7.

 7. Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, et al. Multina‑
tional assessment of accuracy of equations for predicting risk of kidney 
failure: a meta‑analysis. JAMA. 2016;315(2):164–74.

 8. Ramirez Medina CR, Ali I, Baricevic‑Jones I, Odudu A, Saleem MA, Whetton 
AD, et al. Proteomic signature associated with chronic kidney disease 
(CKD) progression identified by data‑independent acquisition mass 
spectrometry. Clin Proteomics. 2023;20(1):19.

 9. Ali I, Ibrahim ST, Chinnadurai R, Green D, Taal M, Whetton TD, et al. A 
paradigm to discover biomarkers associated with chronic kidney disease 
progression. Biomark Insights. 2020;15:1177271920976146.

 10. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, 
et al. A new equation to estimate glomerular filtration rate. Ann Intern 
Med. 2009;150(9):604–12.

 11. Sumida K NG, Grams ME, Sang Y, Ballew SH, Coresh J, et al. Conver‑
sion of urine protein–creatinine ratio or urine dipstick protein to urine 
albumin–creatinine ratio for use in chronic kidney disease screening and 
prognosis: Johns Hopkins University. 2015. https:// ckdpc risk. org/ pcr2a cr/.

 12. Ali I, Donne RL, Kalra PA. A validation study of the kidney failure risk equa‑
tion in advanced chronic kidney disease according to disease aetiology 
with evaluation of discrimination, calibration and clinical utility. BMC 
Nephrol. 2021;22(1):194.

 13. Major RW, Shepherd D, Medcalf JF, Xu G, Gray LJ, Brunskill NJ. The kidney 
failure risk equation for prediction of end stage renal disease in UK 
primary care: an external validation and clinical impact projection cohort 
study. PLoS Med. 2019;16(11): e1002955.

 14. Geary B, Walker MJ, Snow JT, Lee DCH, Pernemalm M, Maleki‑Dizaji S, 
et al. Identification of a biomarker panel for early detection of lung cancer 
patients. J Proteome Res. 2019;18(9):3369–82.

 15. Ortea I, Ruiz‑Sánchez I, Cañete R, Caballero‑Villarraso J, Cañete MD. 
Identification of candidate serum biomarkers of childhood‑onset growth 
hormone deficiency using SWATH‑MS and feature selection. J Proteom‑
ics. 2018;175:105–13.

 16. Salie MT, Yang J, Ramirez Medina CR, Zuhlke LJ, Chishala C, Ntsekhe 
M, et al. Data‑independent acquisition mass spectrometry in severe 
rheumatic heart disease (RHD) identifies a proteomic signature showing 
ongoing inflammation and effectively classifying RHD cases. Clin Prot‑
eomics. 2022;19(1):7.

 17. Acharjee A, Larkman J, Xu Y, Cardoso VR, Gkoutos GV. A random forest 
based biomarker discovery and power analysis framework for diagnostics 
research. BMC Med Genomics. 2020;13(1):178.

 18. Kursa MB, Rudnicki WR. Feature selection with the boruta package. J Stat 
Softw. 2010;36(11):1–13.

 19. Polo TCF, Miot HA. Use of ROC curves in clinical and experimental studies. 
J Vasc Bras. 2020;19: e20200186.

 20. Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio 
RG. Structure of complement C6 suggests a mechanism for initiation and 
unidirectional, sequential assembly of membrane attack complex (MAC). 
J Biol Chem. 2012;287(13):10210–22.

 21. Thurman JM. Complement in kidney disease: core curriculum 2015. Am J 
Kidney Dis. 2015;65(1):156–68.

 22. Berger SP, Roos A, Daha MR. Complement and the kidney: what 
the nephrologist needs to know in 2006? Nephrol Dial Transplant. 
2005;20(12):2613–9.

 23. Koopman JJE, van Essen MF, Rennke HG, de Vries APJ, van Kooten C. 
Deposition of the membrane attack complex in healthy and diseased 
human kidneys. Front Immunol. 2020;11: 599974.

 24. Rauscher CK, Fajt ML, Bryk J, Petrov AA. Clinical implications of C6 com‑
plement component deficiency. Allergy Asthma Proc. 2020;41(5):386–8.

 25. Grumach AS, Kirschfink M. Complement Deficiencies. In: Rezaei N, editor. 
Encyclopedia of infection and immunity. Oxford: Elsevier; 2022. p. 556–63.

 26. Hsieh LT, Nastase MV, Zeng‑Brouwers J, Iozzo RV, Schaefer L. Soluble 
biglycan as a biomarker of inflammatory renal diseases. Int J Biochem Cell 
Biol. 2014;54:223–35.

 27. Singh S, Wu T, Xie C, Vanarsa K, Han J, Mahajan T, et al. Urine VCAM‑1 as a 
marker of renal pathology activity index in lupus nephritis. Arthritis Res 
Ther. 2012;14(4):R164.

 28. Jeruschke S, Büscher AK, Oh J, Saleem MA, Hoyer PF, Weber S, et al. Pro‑
tective effects of the mTOR inhibitor everolimus on cytoskeletal injury in 
human podocytes are mediated by RhoA signaling. PLoS ONE. 2013;8(2): 
e55980.

 29. Schiffer M, Teng B, Gu C, Shchedrina VA, Kasaikina M, Pham VA, et al. 
Pharmacological targeting of actin‑dependent dynamin oligomerization 
ameliorates chronic kidney disease in diverse animal models. Nat Med. 
2015;21(6):601–9.

 30. Reiser J, Sever S. Podocyte biology and pathogenesis of kidney disease. 
Annu Rev Med. 2013;64:357–66.

 31. Ahmadian E, Eftekhari A, Atakishizada S, Valiyeva M, Ardalan M, Khalilov R, 
et al. Podocytopathy: the role of actin cytoskeleton. Biomed Pharmaco‑
ther. 2022;156: 113920.

 32. Solanki AK, Srivastava P, Rahman B, Lipschutz JH, Nihalani D, Arif E. The 
use of high‑throughput transcriptomics to identify pathways with thera‑
peutic significance in podocytes. Int J Mol Sci. 2019;21(1):274.

 33. Mukherjee K, Gu C, Collins A, Mettlen M, Samelko B, Altintas MM, et al. 
Simultaneous stabilization of actin cytoskeleton in multiple nephron‑
specific cells protects the kidney from diverse injury. Nat Commun. 
2022;13(1):2422.

 34. Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney 
physiology and diseases. Small GTPases. 2022;13(1):141–61.

 35. Babelova A, Jansen F, Sander K, Löhn M, Schäfer L, Fork C, et al. Activation 
of Rac‑1 and RhoA contributes to podocyte injury in chronic kidney 
disease. PLoS ONE. 2013;8(11): e80328.

 36. Hou J. The kidney tight junction (review). Int J Mol Med. 
2014;34(6):1451–7.

 37. Lee DB, Huang E, Ward HJ. Tight junction biology and kidney dysfunction. 
Am J Physiol Renal Physiol. 2006;290(1):F20‑34.

 38. Ali I, Chinnadurai R, Ibrahim ST, Kalra PA. Adverse outcomes associated 
with rapid linear and non‑linear patterns of chronic kidney disease pro‑
gression. BMC Nephrol. 2021;22(1):82.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://ckdpcrisk.org/pcr2acr/

	Evaluation of a proteomic signature coupled with the kidney failure risk equation in predicting end stage kidney disease in a chronic kidney disease cohort
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study population and setting
	Albuminuria, GFR slope calculation and patient selection
	Kidney failure risk equation
	Outcome
	Sequential Window Acquisition of All Theoretical Fragment Ion Spectra (SWATH) analysis
	Statistical and data analysis

	Results
	Demographic information
	A proteomic signature of ESRD
	Functional enrichment analysis

	Discussion
	Regulation of the actin cytoskeleton pathway
	RHO GTPases pathway
	Tight junction pathway

	Conclusions
	Acknowledgements
	References


