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Abstract 

Background:  Autism is a severe childhood neurological disorder with poorly understood etiology and pathology. 
Currently, there is no authentic laboratory test to confirm the diagnosis of autism. Oxidative damage may play a 
central role in the pathogenesis of autism. Present study is an effort to search for possible biomarkers of autism and 
further clarify the molecular changes associated with oxidative stress that occurs in the plasma of autistic children.

Methods:  We performed redox proteomics analysis to compare carbonylated proteins in the plasma of autistic 
subjects and healthy controls. Immunoprecipitation and Western blot analysis were used to validate carbonylated 
proteins identified by the redox proteomics.

Results:  Protein carbonylation levels in two proteins, complement component C8 alpha chain and Ig kappa chain C 
were found to be significantly increased in autistic patients compared with controls. These two proteins were success-
fully validated via immunoprecipitation and Western blot analysis.

Conclusions:  The results further highlight the role of oxidative stress in the pathogenesis of autism and provide 
some information for the diagnosis and/or monitoring of autism.
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Background
Autism spectrum disorders (ASDs) are characterized 
by social deficits, repetitive/stereotypical behaviors 
and interests, as well as communication problems [1]. 
An increase in the prevalence of ASD is being reported 
worldwide with social, behavioral and economical bur-
dens, and recent epidemiological studies indicated that at 
least one in every 100 people has some form of autism 
[2, 3]. Even more, autism related disorders are increas-
ing at an alarming rate and have now affected 2% of US 

school-aged children [4]. The boys had a higher preva-
lence than girls and the boy to girl’s ratio on average is 
4.3:1 [5].

ASD is considered as a multi-factorial disorder, influ-
enced by genetic, neurological, environmental and 
immunological factors. Biomolecular evidence points to 
complex gene–environmental interactions in ASDs. A 
significant contribution from environmental factors in 
determining ASD risk is consistent with both the rapid 
increase in ASD incidence and the clinical heterogeneity 
which are hallmark of this neurodevelopmental disorder 
[6]. Several biochemical processes are associated with 
ASDs. These include oxidative stress, decreased meth-
ylation capacity, limited production of glutathione, mito-
chondrial dysfunction, intestinal dysbiosis, increased 
toxic metal burden and various immune abnormalities 
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[7]. However, up to now, the etiology of autism is not 
fully understood, there are no medications prescribed for 
the core symptoms of autism. But some behavioral treat-
ments are available to improve core and associated symp-
toms of autism, particularly when initiated at an early 
stage [8]. Regretfully, so far, no biomarkers for diagnosis 
or prediction of autism have been validated [9]. Thus, 
there is an increasing demand for finding biomarkers of 
autism as they could help to identify children with ASD 
as early as possible [10].

Human blood is a rich source for biomarker discov-
ery. Proteomics provides the opportunity to analyze 
and identify biomarkers for neuropsychiatric disorders 
including ASD. However, in past years, very few studies 
are reported on proteomics based research on autism, 
and these were quantitative proteomics studies in which 
differential expression of proteins were identified [11]. 
Besides detecting the changes in protein concentration, 
post-translational protein modifications (PTMs) have 
contributed significantly to the identification of macro-
molecular biomarkers of biological processes [12]. Using 
a redox proteomics approach, some oxidatively modified 
proteins have been identified in plasma [13], cerebro-
spinal fluid [14] and brain of Alzheimer’s disease (AD) 
patients [15]. The existing evidences support the role 
of oxidative stress in the pathogenesis of autism [16]. 
Increased oxidative stress could lead to protein oxidation, 
resulting in 3-nitrotyrosine (3NT) and protein carbonyl 
formation. Protein carbonyls (PCO) and 3NT-modified 
proteins are considered as markers of protein oxidation. 
Interestingly, 3NT have been found to be elevated in 
plasma [17], cerebellum brains of children with ASD [18]. 
However, at present, no study focused on redox proteom-
ics study of plasma proteins in autism. In order to under-
stand the role of oxidative stress in the pathophysiology 
of autism and search possible protein biomarkers with 
diagnostic utility, we carried out redox proteomics analy-
sis to compare protein profiles of plasma from children 
with autism and healthy controls in this study. To best of 
our knowledge, this is the first report applying redox pro-
teomics to plasma from children with autism compared 
to healthy subjects.

Methods
Plasma samples
Twelve male and three female autistic patients (2–6 years 
old) were selected for sampling from Populations and 
Family Planning Hospital of Baoan and subjected for 
comparative autism analysis along with 12 male and 
3 female normal control patients of the same age. The 
study protocol was approved by Human Research Eth-
ics Committees of Populations and Family Planning 
Hospital of Baoan. The autism was diagnosed by a child 

neuropsychiatrist based on the criteria of autistic disor-
ders as defined in the Diagnostic and Statistical Manual 
of Mental Disorder-Fourth Edition (DSM-IV). Partici-
pants did not have any physical disabilities, or additional 
psychiatric or neurological diagnosis or family history of 
ASD. They were also not taking medications and any die-
tary supplements. There were no significant differences 
in the distributions of weight, height or body mass index 
(BMI) between the autism and the control groups. The 
experiments were conducted with the written consent of 
the caretakers of the children under observation accord-
ing to the guidelines of the Human Research Ethics Com-
mittees of Populations and Family Planning Hospital of 
Baoan. Blood samples (5  ml) were collected in sodium 
heparin coated plastic tubes in the morning and in the 
fasting state, and then centrifuged at 3000×g for 10 min 
at room temperature. The supernatants were divided and 
stored in aliquots at −80 °C for further analysis.

Sample preparation
For redox proteomic analysis, the pooled plasma samples 
were used. Equal amounts of plasma from 15 autism and 
15 healthy controls were pooled, respectively. In order to 
reduce the sample complexity, the pooled plasma sam-
ples were pre-treated with ProteoExtract Albumin/IgG 
Removal Kit (Calbiochem, Darmstadt, Germany). After 
high-abundance proteins depletion, the samples were 
centrifuged at 12,000×g in Amicon® Ultra Centrifugal 
Filters (3  kDa cut-off, Millipore) and buffer-exchanged 
with sample buffer (7  M urea, 2  M thiourea, 4% (w/v) 
CHAPS, 2% (v/v) immobilized pH gradients (IPG) buffer 
pH 4–7 NL, 65  mM DTT, 30  mM Tris). To verify the 
efficiency of immunodepletion, flow-through fraction 
(depleted serum) and eluted fraction were separated on 
sodium dodecyl sulfate–polyacrylamide gel electropho-
resis (SDS–PAGE) followed by Coomassie brilliantlue 
staining R-250. All protein samples were stored at −80 °C 
until further analysis and the protein concentration was 
determined by the Bradford assay.

2D‑Oxyblot
PCO were analyzed by 2-DE (two-dimensional gel elec-
trophoresis) plus Western blot analysis (2D-Oxyblot) 
using the in-strip derivatization technique [19, 20]. 2-DE 
was performed as described previously in detail [21]. 
Each sample was electrophorized in duplicates, after 
running, proteins in one gel were silver stained, and in 
another gel was transferred to polyvinylidene difluoride 
(PVDF) membrane. The membranes were subsequently 
blocked, washed and incubated overnight at 4  °C for 
immunoblotting with anti-DNP (dinitrophenylhydra-
zone) antibody (1:1000 dilution, Sigma-Aldrich Co., 
St. Louis, USA). The blots were then washed with PBS 
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(phosphate-buffered saline) and 0.2% (v/v) Tween-20 
(PBST) and incubated with the goat anti-mouse IgG/
HRP conjugate (1:5000 dilution, Abmart Inc, Shang-
hai, China). After three washes with PBST, the signal 
was detected with an ECL kit (Pierce ECL detection kit, 
Thermo Fisher Scientific Inc., Rockford, USA). The emit-
ted chemiluminescent signals were detected using a 
digital imaging system (Kodak Image Station 4000MM, 
Carestream Health, Inc., Rochester, NY, USA). Silver-
stained gels were imaged using the proXPRESS 2D imag-
ing system (PerkinElmer, Waltham, MA, USA). The 
intensity of carbonylated spots on 2D-Oxyblots was nor-
malized versus their respective spots visualized on silver 
stained gels. The spots showing significant differences in 
specific carbonylation levels between autism and control 
using Student’s t test statistical analysis (p  <  0.05) were 
chosen for identification. For protein identification, the 
spots of interest were excised manually from the silver-
stained gels and tryptic in-gel digestion was performed 
as described previously [22]. Mass spectroscopy analysis 
was performed on a 5800 MALDI TOF/TOF mass spec-
trometer (AB Sciex, Foster City, CA, USA) [21, 22] or 
Triple TOF 5600 system (AB Sciex) [23].

Immunoprecipitation and post‑Western blot derivatization
To confirm the redox proteomic results, the carbonyl 
levels of C8A and IGKC were detected by post-West-
ern blot derivatization after immunoprecipitation [20].
The experiment was replicated three times. For each 
time, three age-and sex-matched different subjects were 
randomly chosen from the total 15 of each group, and 
their original individual plasma frozen aliquots were 
used. C8A and IGKC were immunoprecipitated using 
C8A antibody (Santa Cruz Biotechnology Inc., Santa 
Cruz, CA, USA) and IGKC antibody (Bioss Inc., Beijing, 
China), respectively, and then probed for protein car-
bonyl levels. Protein samples (300  µg) were incubated 
overnight at 4 °C with the respective antibodies. Protein 
A and G plus-agarose beads (Santa Cruz Biotechnol-
ogy Inc.) were added, and the mixture was incubated 
for 3  h, and then washed with lysis buffer three times. 
The beads were resuspended in SDS loading buffer and 
boiled for 5  min. After centrifugation, the supernatant 
was collected, separated by SDS–PAGE, and transferred 
to PVDF membranes. The membranes were equilibrated 
in solution A (20% (v/v) methanol: 80% (v/v) PBST) for 
5  min, followed by incubation in 2  N HCl for 5  min. 
The proteins on blots were then derivatized in solution 
B (0.5  mM DNPH (2,4-dinitrophenylhydrazine) in 2  N 
HCl) for 5 min [24]. The membranes were washed three 
times in 2 N HCl for 5 min each and then five times with 
50% methanol and two times with PBST each for 5 min. 
The immune complexes were revealed by enhanced 

chemiluminescence as described above. The data are pre-
sented as mean ± standard error of the mean (SEM) and 
statistical analyses were performed by two-tailed Stu-
dent’s t test. p values <0.05 were considered statistically 
significant.

Results
Immunodepletion of high abundance plasma proteins
The most challenging obstacle to develop blood-based 
biomarkers is the massive dynamic range of proteins in 
blood, spanning up to 12 orders of magnitude [25]. In 
this study, prior to proteomic analysis, plasma samples 
were processed using the ProteoExtract Albumin/IgG 
Removal Kit, which selectively removes albumin and 
immunoglobulin (IgG) from the plasma sample. The pro-
tein patterns of plasma samples before and after deple-
tion were visualized on SDS–PAGE gels and shown in 
Fig.  1. Consistent with the user manual, after depletion 
of high abundance proteins as compared to the crude 
plasma sample, more protein bands were observed in 
the lane of depleted plasma, suggesting that the low and 
medium abundance proteins could be enriched by affin-
ity depletion of abundant proteins. However, the results 
also showed that most of albumin and IgG were removed 
except few of them (Fig. 1), which is consistent with man-
ufacturer’s instruction and previous study [26].

Redox proteomics analysis of children with autism 
and healthy control plasma samples
Using a redox proteomics approach, after isoelectric 
focusing (IEF), IPG strips were derivatized with DNPH, 
which were then separated by SDS–PAGE gel and 
detected by Western blot analysis with anti-DNP anti-
body. Hence the carbonylated proteins were identified. 
Figure 2 shows representative 2D gels with silver staining 
of total proteins and the corresponding 2D-Oxyblots for 
carbonylated proteins in the plasma of autistic children 
and controls. Through image comparison, three proteins 
were found to be significantly elevated in carbonyl levels 
(p < 0.05) and considered as carbonylated proteins in chil-
dren with autism (Fig. 2b). These were identified by mass 
spectrometry analysis. These proteins were complement 
component C8 alpha chain (C8A) and Ig kappa chain 
C (IGKC). The relevant information of these proteins is 
listed in Table 1 and indicated by arrows and numbers in 
Fig. 2. The spots 1 and 2 were identified as the same pro-
tein (Table 1; Fig. 2), i.e., IGKC. No significant differences 
were observed in their protein expression levels between 
patients and the healthy controls (Fig. 2a).

Validation of redox proteomics results
To validate redox proteomics results, the carbonyl lev-
els of C8A and IGKC were detected. Samples were 
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post-derivatized with DNPH on a membrane and probed 
with anti-DNPH antibody to identify the carbonylated 
proteins. Consistent with redox proteomics results, 
the carbonyl levels of C8A and IGKC were significantly 
higher in the plasma of children with autism compared 
with the healthy control subjects (Fig. 3, p < 0.05).

Discussion
Autism is a severe developmental disorder with poorly 
understood etiology. Oxidative stress is documented and 
independently confirmed to be increased in children with 
autism by various methods [27]. Increased excretion of 
oxidative stress biomarkers and reduced levels of anti-
oxidants have been reported in autism [16, 27–29]. The 
brain is highly vulnerable to oxidative stress due to its 
limited antioxidant capacity, higher energy requirement, 
and higher amounts of lipids and iron [30]. Children are 
more vulnerable than adults to oxidative stress because 
of their naturally low glutathione levels from conception 
through infancy [27, 31]. Oxidative stress could result in 
protein oxidation, however, the relation between carbon-
ylated proteins and autism has not been investigated yet.

Here, we applied redox proteomics approaches to ana-
lyze the carbonylated proteins in the plasma of autistic 
patients. The results revealed that the carbonyl levels 
of two proteins (i.e., C8A and IGKC) were significantly 
increased in autistic subjects compared with age-matched 
controls. C8A is involved in complement and coagulation 
cascades and IGKC involved in immune response. Inter-
estingly, complement active and immune dysfunction has 
been related to the pathogenesis of autism [32, 33]. The 
complement system comprises a group of proteins which, 

when activated, provide one of the first lines of defense by 
promoting lysis and removal of invading microbes [34]. 
The complement system may also be involved in cellular 
apoptosis in brain and peripheral differences of immune 
molecules that could impact indirectly on the developing 
brain in autism [32]. Comparison with healthy controls, 
several up-regulated complement proteins have been 
reported in the serum of ASD [32], including comple-
ment factor H related protein (FHR1), complement C1q 
and complement factor I (CFI). Increases in three pep-
tides that correspond to C3 complement protein frag-
ments were identified in the plasma of children with ASD 
[33]. Here, C8A showing significantly increased carbonyl 
levels in the plasma from autistic children compared with 
controls, demonstrating and supporting the option that 
complement system may be involved in the pathophysiol-
ogy of autism [32, 33]. Generally, oxidative modification 
of proteins/enzyme leads to dysfunction or decreased 
activity, but the effect of oxidatively modified C8A is not 
clear and require further study.

Immune dysfunction such as immune cell dysfunc-
tion, imbalance of serum IgGs and cytokines has been 
proposed as a potential mechanism for ASD [35–37]. 
Decreased levels of IgM and IgG classes of IgG have been 
observed in a previous study, with lower levels found 
to correlate with more aberrant behaviors in ASD [36]. 
Studies showed that higher frequency of autoimmune 
disorders, such as rheumatoid arthritis in families with 
autistic probands than in those of healthy control sub-
jects [27]. In this study, two protein spots were identi-
fied as IGKC. As the plasma used were obtained from 2 
to 6 years old children, implying that IgG is prone to be 

Fig. 1  The efficiency of immunodepletion of high-abundance plasma proteins. 20 µg crude plasma (without depletion), flow-through fractions 
(low and medium abundance proteins) and eluted fractions (high abundance proteins) were separated on 12% SDS–PAGE gel and stained with 
silver. Mr molecular weight
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oxidized. This is consistent with previous studies show-
ing that IgG and especially its Fc portion was quite vul-
nerable to reactive oxygen species [38]. Elevated levels 
of oxidized IgG have been observed in various diseases, 

including AD [14], rheumatoid arthritis [39], end-stage 
renal disease patients [40] and type 1 diabetes mellitus 
etc. [41, 42]. Very recently, five IgG proteins including Ig 
gamma-2B chain C region (IGH-3), Ig lambda-2 chain 

Fig. 2  Analysis of carbonylated plasma proteins from the plasma of children with autism and age-matched control subjects by 2D-Oxyblots. 
a Representative 2-DE gel stained with silver to visualize all protein of plasma from the control and the children with autism. b Representative 
2D-Oxyblots of plasma from the control and the children with autism

Table 1  Oxidatively modified proteins identified in  the plasma of  children with  autism compared to  the age matched 
controls

a  Peptides matched by mass fingerprinting
b  p < 0.05 versus the control

Spot Protein identified Gene name SwissProt  
accession

MW(kDa)/pI Protein Score Peptides matcheda Oxidation foldb

1 Ig kappa chain C IGKC P01834 11.8/5.58 2332 61 (54) 2.45

2 Ig kappa chain C IGKC P01834 11.8/5.58 184 3 (3) 2.06

3 Complement component C8 
alpha chain

C8A P07357 66.8/6.07 1317 43 (32) 2.18
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C region (IGLC2), IGKC and Ig kappa chain V-V region 
HP R16.7 were identified as carbonylated proteins in the 
serum of 3-month-old triple transgenic AD mice (3× 
Tg-AD mice) [43].

IgG is the high abundant plasma protein in the plasma, 
which was identified as oxidatively modified protein. This 
shows that a relative amount of IgG was still present in 
the IgG-depleted plasma samples [26]. Oxidative stress 
alters its structure and may result in modification of its 
biological properties. In  vitro study has demonstrated 
that oxidation of IgG impairs its ability to bind to mac-
rophage Fc receptors [44] and may lead to decrease its 
anti-inflammatory properties. Likewise, a previous study 
proposed that conformational changes in IgG due to oxi-
dative stress could render it immunogenic, resulting in 
induction of autoantibodies in type 1 diabetes patients 
[42]. Thus, we speculate that oxidative stress lead to 
protein oxidation modifications being one of the factors 
inducting autoimmune response in autistic patients.

It is necessary to point out that this study is a prelimi-
nary investigation. As oxidative stress has been related to 
various diseases, and thus may decrease the specificity of 
carbonylated protein as disease markers. However, based 
on the complexity of autism pathogenesis, a combination 

of multiple markers could be a more powerful approach 
to diagnose this disease [16]. Even more, analyses of both 
protein expression level and oxidative modification (car-
bonylation) could increase specificity of the marker [13]. 
Thus, the oxidatively modified proteins may also be con-
sidered as one type of biomarkers in blood for autism 
diagnosis, and/or combined with differentially expressed 
proteins between autistic patients and healthy subjects. 
In addition, the results would have been enhanced had 
there been another non-ASD control group with devel-
opmental delays and/or other disorders of childhood. 
Clearly, this needs to further investigate. Moreover, this 
technology and technique may also assist in monitoring 
disease states like autism and responses to treatment in a 
clinical trial environment.

Conclusions
This is the first study by using 2D-Oxyblot analysis to 
investigate oxidatively modified plasma proteins in autis-
tic children compared to healthy controls. The results 
showed that the carbonyl levels of two proteins (C8A and 
IGKC) were significantly higher in the plasma of autistic 
children than in healthy controls, which are found to be 
involved in complement system and immunoregulation. 

Fig. 3  Immunoprecipitation followed by Western blot analysis was performed to confirm the carbonylation of C8A and IGKC proteins in plasma. a, 
b The efficiency of immunoprecipitation was checked with anti-C8A and anti-IGKC antibody (IP + WB), respectively. They were immunoprecipitated 
with respective antibodies and Western blot analysis with anti-DNP antibody (IP + DNP-derivate + WB). c, d Histograms represent the alteration of 
protein carbonyl levels in which the measured value is normalized with the mean of the control subjects. *p < 0.05 versus control
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The results support the view that oxidative stress may be 
involved in the pathogenesis of autism and add additional 
evidence for oxidative stress in autism, implicating that 
antioxidant therapy may be beneficial in the treatment of 
autism. This study will enhance our understanding about 
autism pathogenesis, and if this can be replicated in 
larger independent and controlled trials then maybe this 
type of technique can be used in the future as a possible 
diagnostic tool.
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